Python:截断字符串并合并

时间:2018-11-08 18:32:22

标签: python pandas dataframe web-scraping

我要实现的目标

我下面的代码抓取一个网站,并将数据框导出到excel文件。但是,我需要从第一列中删除不必要的字符并将其组合起来,这样就无需在excel文件中重命名月份。每行都有来自HOZ18(2018年12月)'HOZ19(2019年12月)网站的名称,除了“ \”外,我也没有兴趣。因此,我只希望第一列中的12月18日,1月19日,2月20日等。

代码

    from urllib.request import urlopen
    import pandas as pd
    import requests
    from bs4 import BeautifulSoup

    url = "https://shared.websol.barchart.com/quotes/quote.php?page=quote&sym=ho&x=13&y=8&domain=if&display_ice=1&enabled_ice_exchanges=&tz=0&ed=0"

    res = requests.get(url)

    soup = BeautifulSoup(res.text, 'lxml')

    Contracts=[]
    LastPrice=[]


    data_rows = soup.findAll('tr')[2:]

    for td in data_rows:
       Contract = td.findAll('td')[0].text
       Contracts.append(Contract)
       LstPrice = td.findAll('td')[7].text
       LastPrice.append(LstPrice)

   df = pd.DataFrame({'Contracts': Contracts, 'Previous Settled': LastPrice})

输出(仅部分)

  0     Cash (HOY00)    2.1884
  1     Dec \'18 (HOZ18)    2.2371
  2     Jan \'19 (HOF19)    2.2238
  3     Feb \'19 (HOG19)    2.2125

2 个答案:

答案 0 :(得分:0)

如果您希望将类似Dec \'18 (HOZ18)的字符串转换为December 18,这是一种解决方案。

1)定义一个清理字符串的函数:

# define a dictionary to convert short month names to full ones
month_mapper = {
    'Jan': 'January',
    'Feb': 'February',
    'Mar': 'March',
    'Apr': 'April',
    'May': 'May',
    'Jun': 'June',
    'Jul': 'July',
    'Aug': 'August',
    'Sep': 'September',
    'Oct': 'October',
    'Nov': 'November',
    'Dec': 'December',
}

def clean_month_string(s):
    # replace the '\' char with empty string
    s = s.replace('\\', '')

    # split into three pieces on space
    # eg, "Dec '18 (HOZ18)" ->
    #   month = "Dec"
    #   year = "'18"
    #   code = "(HOZ18)"
    month, year, code = s.split(' ')

    # convert month using month mapper
    month = month_mapper[month]

    # remove the ' at the start of the year
    year = year.replace("'", "")

    # return new month and new year (dropping code)
    return ' '.join([month, year])

2)使用apply将该函数应用于DataFrame中的每一行。

# drop that first row, which is not properly formatted
df = df.drop(0).reset_index(drop=True)

# apply the function to your 'Contracts' series.
df['Contracts'] = df['Contracts'].apply(clean_month_string)

答案 1 :(得分:0)

这里是不需要.apply()的选项。假设我们正在处理21世纪的岁月,不确定是否对您有用。并且还会将月份存储为数字,这很有用,如果没有,您可以删除该位。

import pandas as pd
import re
import datetime

# Data setup.

data = pd.DataFrame(['Dec \'18 (HOZ18)', 'Jan \'19 (HOF19)', 'Feb \'19 (HOG19)'], columns = ['string'])

# Extract the month number using regex, then map it to a month number.

data['month_number'] = [datetime.datetime.strptime(re.sub('\s\'.*', '', i), '%b').month for i in data['string']]

# Extract the year, prepend '20' and store as an integer.

data['year'] = [int('20' + re.search('\d\d', i).group(0)) for i in data['string']]

print(data)

给予:

            string  month_number  year
0  Dec '18 (HOZ18)            12  2018
1  Jan '19 (HOF19)             1  2019
2  Feb '19 (HOG19)             2  2019