在使用拼花模式将数据框另存为表时遇到以下错误,在将表重新分区为400之前,这是正在解析的spark提交参数:
-num-executors 12 --executor-cores 8 --executor-memory 12g --driver- 内存32g --driver-cores 2 --conf spark.sql.shuffle.partitions = 400
18/11/05 22:02:04 ERROR FileFormatWriter: Aborting job null.
org.apache.spark.SparkException: Job aborted due to stage failure:
ShuffleMapStage 16 (saveAsTable at testSite.scala:192) has failed the maximum allowable number of times: 4. Most recent failure reason: org.apache.spark.shuffle.FetchFailedException:
Too large frame: 3405090943 at org.apache.spark.storage.ShuffleBlockFetcherIterator.throwFetchFailedException(ShuffleBlockFetcherIterator.scala:513)
at org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:444)
at org.apache.spark.storage.ShuffleBlockFetcherIterator.next(ShuffleBlockFetcherIterator.scala:61)
at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at org.apache.spark.util.CompletionIterator.hasNext(CompletionIterator.scala:32)
at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.sort_addToSorter$(Unknown Source)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source) at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43) at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:395) at org.apache.spark.sql.execution.RowIteratorFromScala.advanceNext(RowIterator.scala:83) at org.apache.spark.sql.execution.joins.SortMergeJoinScanner.advancedBufferedToRowWithNullFreeJoinKey(SortMergeJoinExec.scala:793) at org.apache.spark.sql.execution.joins.SortMergeJoinScanner.<init>(SortMergeJoinExec.scala:668) at org.apache.spark.sql.execution.joins.SortMergeJoinExec$$anonfun$doExecute$1.apply(SortMergeJoinExec.scala:204) at org.apache.spark.sql.execution.joins.SortMergeJoinExec$$anonfun$doExecute$1.apply(SortMergeJoinExec.scala:141) at org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:89) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96) at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53) at org.apache.spark.scheduler.Task.run(Task.scala:108) at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:338) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745) Caused by: java.lang.IllegalArgumentException: Too large frame: 3405090943
at org.spark_project.guava.base.Preconditions.checkArgument(Preconditions.java:119)
at org.apache.spark.network.util.TransportFrameDecoder.decodeNext(TransportFrameDecoder.java:133)
at org.apache.spark.network.util.TransportFrameDecoder.channelRead(TransportFrameDecoder.java:81)