我想要每个小组中最常上的课。 每个组中可以有多个行,也可以有多个类。 我们可以忽略领带的问题,因为此python应该自动接受第一堂课。
我尝试将rdd更改为触发数据帧,然后使用来自以下链接pyspark: aggregate on the most frequent value in a column的代码
但是我尝试不将数据转换为SparkDataframe
下面是数据集
Data= sc.parallelize([(1, 'class1', 0.0),
(1, 'class1', 2.9870435922860854),
(1, 'class1', 3.1390539564237088),
(2, 'class1', 1.8147552294243288),
(2, 'class1', 2.2762141107738643),
(2, 'class1', 2.3276650040679754),
(3, 'class1', 2.1916602976063415),
(3, 'class2', 2.8092745089004265),
(3, 'class2', 2.962653217205646),
(4, 'class2', 1.9684050295783773),
(4, 'class2', 2.6954556024643974),
(4, 'class1', 2.849277442723792),
(5, 'class2', 2.42178294501635),
(5, 'class2', 3.650846798310411),
(5, 'class1', 4.209012410198228),
(6, 'class1', 1.942895930291406),
(6, 'class1', 2.3133629778496676),
(6, 'class2', 3.0147225096785264),
(7, 'class1', 1.7185194340256884),
(7, 'class1', 2.91322741107079),
(7, 'class1', 3.5767422323347633),
(8, 'class1', 2.4711392945465893),
(8, 'class1', 3.436547108084221),
(8, 'class1', 3.937683211352823),
(9, 'class1', 3.800013103330196),
(9, 'class1', 4.632413017908266),
(9, 'class1', 5.191184050603831),
预期产量
[(1, Class1),(2,Class1),(3,Class2),(4,Class2),(5,Class2),(6,Class1),(7,Class1),(8,Class1),(9,Class1)]
另外,我可能有多个班级。
每行中的第一个元素是组ID,第二个元素是类,第三个元素只是距离,我认为这实际上并没有多大用处。
答案 0 :(得分:0)
这是pyspark的RDD解决方案
>>> rddMap1 = Data.map(lambda x: (str(x[0])+','+x[1],float(x[2])))
>>> rddMap1.first()
('1,class1', 0.0)
>>>
>>> rddReduce1 = rddMap1.reduceByKey(lambda x,y: x+y)
>>> rddReduce1.first()
('1,class1', 6.126097548709794)
>>>
>>> rddMap2 = rddReduce1.map(lambda x: (int(x[0].split(',')[0]),(x[0].split(',')[1],x[1])))
>>> rddMap2.first()
(1, ('class1', 6.126097548709794))
>>>
>>> rddReduce2 = rddMap2.reduceByKey(lambda x,y: x if x[1] > y[1] else y)
>>> rddReduce2.first()
(1, ('class1', 6.126097548709794))
>>>
>>> rddReduce2.map(lambda x: (x[0],x[1][0])).collect()
[(1, 'class1'), (2, 'class1'), (3, 'class2'), (4, 'class2'), (5, 'class2'), (6, 'class1'), (7, 'class1'), (8, 'class1'), (9, 'class1')]
答案 1 :(得分:-1)
from operator import add
from operator import itemgetter
data= sc.parallelize([
(1, 'class1', 0.0),
(1, 'class1', 2.9870435922860854),
(1, 'class1', 3.1390539564237088),
(2, 'class1', 1.8147552294243288),
(2, 'class1', 2.2762141107738643),
(2, 'class1', 2.3276650040679754),
(3, 'class1', 2.1916602976063415),
(3, 'class1', 2.1916602976063415),
(3, 'class1', 2.1916602976063415),
(3, 'class2', 2.8092745089004265),
(3, 'class2', 2.962653217205646),
(3, 'class4', 1.9684050295783773),
(3, 'class4', 2.6954556024643974),
(3, 'class4', 2.849277442723792),
(3, 'class4', 2.42178294501635),
(5, 'class2', 3.650846798310411),
(5, 'class1', 4.209012410198228),
(6, 'class1', 1.942895930291406),
(6, 'class1', 2.3133629778496676),
(6, 'class2', 3.0147225096785264),
(7, 'class1', 1.7185194340256884),
(7, 'class1', 2.91322741107079),
(7, 'class1', 3.5767422323347633),
(8, 'class1', 2.4711392945465893)
])
data2 = data.map(lambda x: ((x[0],x[1]), 1)).reduceByKey(add).map(lambda x: ((x[0][0]),(x[0][1],x[1]))).groupByKey().mapValues(list)
data3 = data2.map(lambda (k, l): (k, sorted(l, key=itemgetter(1), reverse=True)))
data4 = data3.mapValues(lambda x: (x[0]))
返回:
[(8, ('class1', 1)), (1, ('class1', 3)), (2, ('class1', 3)), (3, ('class4', 4)), (5, ('class1', 1)), (6, ('class1', 2)), (7, ('class1', 3))]
每天都给我Scala!
领带不符合要求。不知道您将如何做,如果真的做了,真正的好处还不是那么明显。