我尝试用scipy.sparse从json文件创建一个矩阵。
我通过这种方式拥有json文件
{"reviewerID": "A10000012B7CGYKOMPQ4L", "asin": "000100039X", "reviewerName": "Adam", "helpful": [0, 0], "reviewText": "Spiritually and mentally inspiring! A book that allows you to question your morals and will help you discover who you really are!", "overall": 5.0, "summary": "Wonderful!", "unixReviewTime": 1355616000, "reviewTime": "12 16, 2012"}
这是我的Json格式...更多类似的元素(基于Amazon Review文件)
并希望对其进行稀疏
count
object a b c d
id
him NaN 1 NaN 1
me 1 NaN NaN 1
you 1 NaN 1 NaN
我正在尝试这样做
i
mport numpy as np
import pandas as pd
from scipy.sparse import csr_matrix
df= pd.read_json('C:\\Users\\anto-\\Desktop\\university\\Big Data computing\\Ex. Resource\\test2.json',lines=True)
a= df['reviewerID']
b= df['asin']
data= df.groupby(["reviewerID"]).size()
row = df.reviewerID.astype('category', categories=a).cat.codes
col = df.asin.astype('category', categories=b).cat.codes
sparse_matrix = csr_matrix((data, (row, col)), shape=(len(a), len(b)))
从这个旧示例中阅读
Efficiently create sparse pivot tables in pandas?
我在代码中弃用元素时遇到一些错误,但是我不了解如何构造此矩阵。
这是错误日志:
FutureWarning: specifying 'categories' or 'ordered' in .astype() is deprecated; pass a CategoricalDtype instead
from ipykernel import kernelapp as app
我有点困惑。 有人可以给我一些建议或类似的例子吗?
答案 0 :(得分:0)
产生一个看起来像
的稀疏矩阵 count
object a b c d
id
him NaN 1 NaN 1
me 1 NaN NaN 1
you 1 NaN 1 NaN
您需要生成3个数组,例如:
In [215]: from scipy import sparse
In [216]: data = np.array([1,1,1,1,1,1])
In [217]: row = np.array([1,2,0,2,0,1])
In [218]: col = np.array([0,0,1,2,3,3])
In [219]: M = sparse.csr_matrix((data, (row, col)), shape=(3,4))
In [220]: M
Out[220]:
<3x4 sparse matrix of type '<class 'numpy.int64'>'
with 6 stored elements in Compressed Sparse Row format>
In [221]: M.A
Out[221]:
array([[0, 1, 0, 1],
[1, 0, 0, 1],
[1, 0, 1, 0]], dtype=int64)
诸如“他”,“我”,“你”之类的类别必须映射到唯一索引,例如0,1,2。同样对于“ a”,“ b”,“ c”,“ d”。