我有一个运行良好的生成器功能。我有一堆.txt文件,其中每个文件也很长。现在的任务是编写一个生成器函数,该函数需要:
现在我的代码:
data_files_generator <- function(train_set) {
files <- train_set
next_file <- 0
function() {
# move to the next file (note the <<- assignment operator)
next_file <<- next_file + 1
# if we've exhausted all of the files then start again at the
# beginning of the list (keras generators need to yield
# data infinitely -- termination is controlled by the epochs
# and steps_per_epoch arguments to fit_generator())
if (next_file > length(files))
{next_file <<- 1}
# determine the file name
file <- files[[next_file]]
text <- read_lines(paste(data_dir, file, sep = "" )) %>%
str_to_lower() %>%
str_c(collapse = "\n") %>%
removeNumbers() %>%
tokenize_characters(strip_non_alphanum = FALSE, simplify = TRUE)
text <- text[text %in% chars]
dataset <- map(
seq(1, length(text) - maxlen - 1, by = 3),
~list(sentece = text[.x:(.x + maxlen - 1)], next_char = text[.x + maxlen])
)
dataset <- transpose(dataset)
# Vectorization
x <- array(0, dim = c(length(dataset$sentece), maxlen, length(chars)))
y <- array(0, dim = c(length(dataset$sentece), length(chars)))
for(i in 1:length(dataset$sentece)){
x[i,,] <- sapply(chars, function(x){
as.integer(x == dataset$sentece[[i]])
})
y[i,] <- as.integer(chars == dataset$next_char[[i]])
}
rounded_dim <- floor(dim(x)[1]/mini_batch_size)
match_size_to_batch <- 128 * rounded_dim
x <- x[1:match_size_to_batch, 1:maxlen, 1:length(chars)]
y <- y_val[1:match_size_to_batch, 1:length(chars)]
return(list(x, y))
}
}
因此,即将到来的是一个文本文件,该文件被转换为较小的文本(长度为maxlen
),然后被热编码为0和1矩阵。
问题是从我的代码中输出的是一个大小为maxlen x lenght(chars) x samples
的数据多维数据集,其中样本数量非常大,为什么我希望生成器函数始终输出大小为{{1 }},然后输出下一个maxlen x lenght(chars) x samples(128)
大小的批处理,直到读取了整个文本文件,然后转到下一个文本文件...
现在的输出是错误:
maxlen x lenght(chars) x samples
希望我已经解释得足够好理解。我想我必须输入某种for循环来迭代样本长度,但是我不知道如何将其包含到gen中。功能。
答案 0 :(得分:1)
根据该错误,您试图输入形状为(112512, 40, 43)
的对象,但您的LSTM层期望使用形状为(128, 40, 43)
的对象。似乎缺少一些代码,但是在定义输入层时,是否要固定批处理大小?我很幸运地将输入层定义为:
l_input = Input(shape = (None, num_features), name = 'input_layer')
我怀疑错误是由于以下几行代码引起的:
rounded_dim <- floor(dim(x)[1]/mini_batch_size)
match_size_to_batch <- 128 * rounded_dim
这使您的批次大小比128大得多。从Keras documentation开始,输入形状应为(batch_size, timesteps, input_dim)
。整个史诗中的批处理大小不必相同,但是对于一个批处理,它们都需要具有相同数量的timesteps
(看起来就像您用maxlen
处理的一样)。
答案 1 :(得分:1)
我实现了一个for循环,该循环现在返回批量为128的批次:
更改代码:
data_files_generator <- function(train_set) {
files <- train_set
next_file <- 0
function() {
# move to the next file (note the <<- assignment operator)
next_file <<- next_file + 1
# if we've exhausted all of the files then start again at the
# beginning of the list (keras generators need to yield
# data infinitely -- termination is controlled by the epochs
# and steps_per_epoch arguments to fit_generator())
if (next_file > length(files))
{next_file <<- 1}
# determine the file name
file <- files[[next_file]]
text <- read_lines(paste(data_dir, file, sep = "" )) %>%
str_to_lower() %>%
str_c(collapse = "\n") %>%
removeNumbers() %>%
tokenize_characters(strip_non_alphanum = FALSE, simplify = TRUE)
text <- text[text %in% chars]
dataset <- map(
seq(1, length(text) - maxlen - 1, by = 3),
~list(sentece = text[.x:(.x + maxlen - 1)], next_char = text[.x + maxlen])
)
dataset <- transpose(dataset)
# Vectorization
x <- array(0, dim = c(length(dataset$sentece), maxlen, length(chars)))
y <- array(0, dim = c(length(dataset$sentece), length(chars)))
for(i in 1:length(dataset$sentece)){
x[i,,] <- sapply(chars, function(x){
as.integer(x == dataset$sentece[[i]])
})
y[i,] <- as.integer(chars == dataset$next_char[[i]])
}
rounded_dim <- floor(dim(x)[1]/mini_batch_size)
match_size_to_batch <- 128 * rounded_dim
x <- x[1:match_size_to_batch, 1:maxlen, 1:length(chars)]
y <- y_val[1:match_size_to_batch, 1:length(chars)]
#Edit:
span_start <-1
for (iter in 1:rounded_dim){
i <- iter * 128
span_end <- iter * 128
x <- x[span_start:span_end, 1:maxlen, 1:length(chars)]
y <- y[span_start:span_end, 1:length(chars)]
span_start <- i
return(list(x, y))
}
}
}