当在pyspark中的DataFrame上使用toPandas()时,神秘的'pyarrow.lib.ArrowInvalid:浮点值被截断'错误

时间:2018-10-31 11:51:04

标签: apache-spark pyspark apache-spark-sql pyarrow apache-arrow

我在不是很大的DataFrame上使用toPandas(),但是出现以下异常:

18/10/31 19:13:19 ERROR Executor: Exception in task 127.2 in stage 13.0 (TID 2264)
org.apache.spark.api.python.PythonException: Traceback (most recent call last):
    File "/home/hadoop/spark2.3.1/python/lib/pyspark.zip/pyspark/worker.py", line 230, in main
      process()
    File "/home/hadoop/spark2.3.1/python/lib/pyspark.zip/pyspark/worker.py", line 225, in process
      serializer.dump_stream(func(split_index, iterator), outfile)
    File "/home/hadoop/spark2.3.1/python/lib/pyspark.zip/pyspark/serializers.py", line 261, in dump_stream
      batch = _create_batch(series, self._timezone)
    File "/home/hadoop/spark2.3.1/python/lib/pyspark.zip/pyspark/serializers.py", line 239, in _create_batch
      arrs = [create_array(s, t) for s, t in series]
    File "/home/hadoop/spark2.3.1/python/lib/pyspark.zip/pyspark/serializers.py", line 239, in <listcomp>
      arrs = [create_array(s, t) for s, t in series]
    File "/home/hadoop/spark2.3.1/python/lib/pyspark.zip/pyspark/serializers.py", line 237, in create_array
      return pa.Array.from_pandas(s, mask=mask, type=t)
    File "pyarrow/array.pxi", line 474, in pyarrow.lib.Array.from_pandas
    File "pyarrow/array.pxi", line 169, in pyarrow.lib.array
    File "pyarrow/array.pxi", line 69, in pyarrow.lib._ndarray_to_array
    File "pyarrow/error.pxi", line 81, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: Floating point value truncated
        at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:298)
        at org.apache.spark.sql.execution.python.ArrowPythonRunner$$anon$1.read(ArrowPythonRunner.scala:171)
        at org.apache.spark.sql.execution.python.ArrowPythonRunner$$anon$1.read(ArrowPythonRunner.scala:121)
        at org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:252)
        at org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
        at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:439)
        at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
        at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage19.agg_doAggregateWithKeys_0$(Unknown Source)
        at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage19.processNext(Unknown Source)
        at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
        at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$10$$anon$1.hasNext(WholeStageCodegenExec.scala:614)
        at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
        at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
        at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
        at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
        at org.apache.spark.scheduler.Task.run(Task.scala:109)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:345)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
        at java.lang.Thread.run(Thread.java:745)

有时,可以忽略此异常,并且我可以获得正确的结果,但是更常见的是,程序退出了。有人知道这个神秘的错误吗?

2 个答案:

答案 0 :(得分:0)

您使用的是哪个版本的pyarrow?我相信从0.11.0版开始,不安全的类型转换会引发错误。

答案 1 :(得分:0)

我遇到了同样的错误。我认为@bryanc是正确的,您需要安全地强制转换类型。在我的情况下,数据为bigint,而函数需要使用float / double。所以我做到了

from pyspark.sql.types import DoubleType
df = df.withColumn("x_dbl", df["x"].cast(DoubleType()))

遵循how to change a Dataframe column from String type to Double type in pyspark

中的方法

然后我没有在“ x”上应用该函数,而是在“ x_dbl”上进行了工作。希望这可以帮助!