因此,我对计算机视觉的总体了解还不错。我目前正在尝试通过分析2张图像来计算单应性。我想用单应性校正1个图像的透视图以匹配另一个图像。但是我得到的比赛是错误的,也是错误的。所以我做的单应性扭曲完全消失了。
我正在使用EmguCV在C#中包装opencv。 我知道我的代码似乎“正确”地工作。
我加载了两个图像,并声明了一些变量来存储计算结果。
(Image<Bgr, byte> Image, VectorOfKeyPoint Keypoints, Mat Descriptors) imgModel = (new Image<Bgr, byte>(imageFolder + "image0.jpg").Resize(0.2, Emgu.CV.CvEnum.Inter.Area), new VectorOfKeyPoint(), new Mat());
(Image<Bgr, byte> Image, VectorOfKeyPoint Keypoints, Mat Descriptors) imgTest = (new Image<Bgr, byte>(imageFolder + "image1.jpg").Resize(0.2, Emgu.CV.CvEnum.Inter.Area), new VectorOfKeyPoint(), new Mat());
Mat imgKeypointsModel = new Mat();
Mat imgKeypointsTest = new Mat();
Mat imgMatches = new Mat();
Mat imgWarped = new Mat();
VectorOfVectorOfDMatch matches = new VectorOfVectorOfDMatch();
VectorOfVectorOfDMatch filteredMatches = new VectorOfVectorOfDMatch();
List<MDMatch[]> filteredMatchesList = new List<MDMatch[]>();
请注意,我使用ValueTuple<Image,VectorOfKeyPoint,Mat>
直接将图像及其各自的关键点和描述符存储起来。
在使用ORB检测器和BruteForce匹配器检测,描述和匹配关键点之后:
ORBDetector detector = new ORBDetector();
BFMatcher matcher = new BFMatcher(DistanceType.Hamming2);
detector.DetectAndCompute(imgModel.Image, null, imgModel.Keypoints, imgModel.Descriptors, false);
detector.DetectAndCompute(imgTest.Image, null, imgTest.Keypoints, imgTest.Descriptors, false);
matcher.Add(imgTest.Descriptors);
matcher.KnnMatch(imgModel.Descriptors, matches, k: 2, mask: null);
此后,我应用ratio test并使用匹配距离阈值进行进一步过滤。
MDMatch[][] matchesArray = matches.ToArrayOfArray();
//Apply ratio test
for (int i = 0; i < matchesArray.Length; i++)
{
MDMatch first = matchesArray[i][0];
float dist1 = matchesArray[i][0].Distance;
float dist2 = matchesArray[i][1].Distance;
if (dist1 < ms_MIN_RATIO * dist2)
{
filteredMatchesList.Add(matchesArray[i]);
}
}
//Filter by threshold
MDMatch[][] defCopy = new MDMatch[filteredMatchesList.Count][];
filteredMatchesList.CopyTo(defCopy);
filteredMatchesList = new List<MDMatch[]>();
foreach (var item in defCopy)
{
if (item[0].Distance < ms_MAX_DIST)
{
filteredMatchesList.Add(item);
}
}
filteredMatches = new VectorOfVectorOfDMatch(filteredMatchesList.ToArray());
禁用所有这些过滤器方法并不能使我的结果变好或变差(仅保留所有匹配项),但是它们似乎很有意义,因此我保留了它们。
最后,我从找到并过滤的匹配项中计算出我的单应性,然后使用该单应性扭曲图像并绘制一些调试图像:
Mat homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(imgModel.Keypoints, imgTest.Keypoints, filteredMatches, null, 10);
CvInvoke.WarpPerspective(imgTest.Image, imgWarped, homography, imgTest.Image.Size);
Features2DToolbox.DrawKeypoints(imgModel.Image, imgModel.Keypoints, imgKeypointsModel, new Bgr(0, 0, 255));
Features2DToolbox.DrawKeypoints(imgTest.Image, imgTest.Keypoints, imgKeypointsTest, new Bgr(0, 0, 255));
Features2DToolbox.DrawMatches(imgModel.Image, imgModel.Keypoints, imgTest.Image, imgTest.Keypoints, filteredMatches, imgMatches, new MCvScalar(0, 255, 0), new MCvScalar(0, 0, 255));
//Task.Factory.StartNew(() => ImageViewer.Show(imgKeypointsModel, "Keypoints Model"));
//Task.Factory.StartNew(() => ImageViewer.Show(imgKeypointsTest, "Keypoints Test"));
Task.Factory.StartNew(() => ImageViewer.Show(imgMatches, "Matches"));
Task.Factory.StartNew(() => ImageViewer.Show(imgWarped, "Warp"));
tl; dr :ORBDetector-> BFMatcher-> FilterMatches-> GetHomography-> WarpPerspective
每个原始图像均为2448x3264,并在对其进行任何计算之前按的比例缩放0.2。
基本上,它很简单但很复杂:我在做什么错? 从上面的示例中可以看到,我检测特征并匹配特征的方法似乎效果极差。所以我问是否有人可以在我的代码中发现错误。或给出建议,说明为什么当互联网上有数百个示例显示出其工作原理和“简易”效果时,我的结果如此糟糕。
我到目前为止所做的尝试:
我使用的示例
原始图片: 原始图像可以从这里下载: https://drive.google.com/open?id=1Nlqv_0sH8t1wiH5PG-ndMxoYhsUbFfkC
所以我问了之后做了一些进一步的研究。上面已经包含了大多数更改,但是我想为此做一个单独的部分。
因此,在遇到许多问题并且似乎无处可去之后,我决定用Google搜索original paper on ORB。此后,我决定尝试并复制他们的一些结果。尝试此操作后,我意识到,即使我尝试将匹配图像旋转一定程度,匹配看起来也不错,但转换完全失败了。
我尝试复制对象透视图的方法是否有可能是错误的?
https://drive.google.com/open?id=17DwFoSmco9UezHkON5prk8OsPalmp2MX (没有软件包,但是nuget restore足以使其编译)
答案 0 :(得分:2)
最大的问题实际上是一个很简单的问题。匹配时我不小心翻转了模型和测试描述符:
matcher.Add(imgTest.Descriptors);
matcher.KnnMatch(imgModel.Descriptors, matches, 1, null);
但是,如果您查看这些功能的文档,则会发现必须添加模型并与测试图像进行匹配。
matcher.Add(imgModel.Descriptors);
matcher.KnnMatch(imgTest.Descriptors, matches, 1, null);
我现在不知道为什么,但是Features2DToolbox.GetHomographyMatrixFromMatchedFeatures
似乎坏了,我的单应性总是错误的,以一种奇怪的方式扭曲了图像(类似于上面的示例)。
要解决此问题,我继续进行操作,直接将包装器调用用于OpenCV FindHomography(srcPoints, destPoints, method)
。为了做到这一点,我必须编写一个小助手来以正确的格式获取数据结构:
public static Mat GetHomography(VectorOfKeyPoint keypointsModel, VectorOfKeyPoint keypointsTest, List<MDMatch[]> matches)
{
MKeyPoint[] kptsModel = keypointsModel.ToArray();
MKeyPoint[] kptsTest = keypointsTest.ToArray();
PointF[] srcPoints = new PointF[matches.Count];
PointF[] destPoints = new PointF[matches.Count];
for (int i = 0; i < matches.Count; i++)
{
srcPoints[i] = kptsModel[matches[i][0].TrainIdx].Point;
destPoints[i] = kptsTest[matches[i][0].QueryIdx].Point;
}
Mat homography = CvInvoke.FindHomography(srcPoints, destPoints, Emgu.CV.CvEnum.HomographyMethod.Ransac);
//PrintMatrix(homography);
return homography;
}
答案 1 :(得分:1)
我遇到了同样的问题,并找到了一个合适的解决方案:github Emgu.CV.Example DrawMatches.cs,一切正常。
我修改了代码和方法FindMatch
看起来像这样:
public static void FindMatch(Mat modelImage, Mat observedImage, out VectorOfKeyPoint modelKeyPoints, out VectorOfKeyPoint observedKeyPoints, VectorOfVectorOfDMatch matches, out Mat mask, out Mat homography)
{
int k = 2;
double uniquenessThreshold = 0.80;
homography = null;
modelKeyPoints = new VectorOfKeyPoint();
observedKeyPoints = new VectorOfKeyPoint();
using (UMat uModelImage = modelImage.GetUMat(AccessType.Read))
using (UMat uObservedImage = observedImage.GetUMat(AccessType.Read))
{
var featureDetector = new ORBDetector(9000);
Mat modelDescriptors = new Mat();
featureDetector.DetectAndCompute(uModelImage, null, modelKeyPoints, modelDescriptors, false);
Mat observedDescriptors = new Mat();
featureDetector.DetectAndCompute(uObservedImage, null, observedKeyPoints, observedDescriptors, false);
using (var matcher = new BFMatcher(DistanceType.Hamming, false))
{
matcher.Add(modelDescriptors);
matcher.KnnMatch(observedDescriptors, matches, k, null);
mask = new Mat(matches.Size, 1, DepthType.Cv8U, 1);
mask.SetTo(new MCvScalar(255));
Features2DToolbox.VoteForUniqueness(matches, uniquenessThreshold, mask);
int nonZeroCount = CvInvoke.CountNonZero(mask);
if (nonZeroCount >= 4)
{
nonZeroCount = Features2DToolbox.VoteForSizeAndOrientation(modelKeyPoints, observedKeyPoints,
matches, mask, 1.5, 20);
if (nonZeroCount >= 4)
homography = Features2DToolbox.GetHomographyMatrixFromMatchedFeatures(modelKeyPoints,
observedKeyPoints, matches, mask, 2);
}
}
}
}
使用:
var model = new Mat(@"image0.jpg");
var scene = new Mat(@"image1.jpg");
Mat result = new Mat();
VectorOfKeyPoint modelKeyPoints;
VectorOfKeyPoint observedKeyPoints;
var matches = new VectorOfVectorOfDMatch();
Mat mask;
Mat homography;
FindMatch(model, scene, out modelKeyPoints, out observedKeyPoints, matches, out mask, out homography);
CvInvoke.WarpPerspective(scene, result, homography, model.Size, Inter.Linear, Warp.InverseMap);
结果:
如果您想观看此过程,请使用下一个代码:
public static Mat Draw(Mat modelImage, Mat observedImage)
{
Mat homography;
VectorOfKeyPoint modelKeyPoints;
VectorOfKeyPoint observedKeyPoints;
using (VectorOfVectorOfDMatch matches = new VectorOfVectorOfDMatch())
{
Mat mask;
FindMatch(modelImage, observedImage, out modelKeyPoints, out observedKeyPoints, matches, out mask, out homography);
Mat result = new Mat();
Features2DToolbox.DrawMatches(modelImage, modelKeyPoints, observedImage, observedKeyPoints,
matches, result, new MCvScalar(255, 0, 0), new MCvScalar(0, 0, 255), mask);
if (homography != null)
{
var imgWarped = new Mat();
CvInvoke.WarpPerspective(observedImage, imgWarped, homography, modelImage.Size, Inter.Linear, Warp.InverseMap);
Rectangle rect = new Rectangle(Point.Empty, modelImage.Size);
var pts = new PointF[]
{
new PointF(rect.Left, rect.Bottom),
new PointF(rect.Right, rect.Bottom),
new PointF(rect.Right, rect.Top),
new PointF(rect.Left, rect.Top)
};
pts = CvInvoke.PerspectiveTransform(pts, homography);
var points = new Point[pts.Length];
for (int i = 0; i < points.Length; i++)
points[i] = Point.Round(pts[i]);
using (var vp = new VectorOfPoint(points))
{
CvInvoke.Polylines(result, vp, true, new MCvScalar(255, 0, 0, 255), 5);
}
}
return result;
}
}
使用:
var model = new Mat(@"image0.jpg");
var scene = new Mat(@"image1.jpg");
var result = Draw(model, scene);
结果: