我正在尝试从Apache Spark中的另一列创建新列。
数据(大写缩写)看起来像
Date Day_of_Week
2018-05-26T00:00:00.000+0000 5
2018-05-05T00:00:00.000+0000 6
并且应该看起来像
Date Day_of_Week Weekday
2018-05-26T00:00:00.000+0000 5 Thursday
2018-05-05T00:00:00.000+0000 6 Friday
我尝试了https://docs.databricks.com/spark/latest/spark-sql/udf-python.html#register-the-function-as-a-udf和How to pass a constant value to Python UDF?和PySpark add a column to a DataFrame from a TimeStampType column手册中的建议
导致:
def int2day (day_int):
if day_int == 1:
return 'Sunday'
elif day_int == 2:
return 'Monday'
elif day_int == 3:
return 'Tuesday'
elif day_int == 4:
return 'Wednesday'
elif day_int == 5:
return 'Thursday'
elif day_int == 6:
return 'Friday'
elif day_int == 7:
return 'Saturday'
else:
return 'FAIL'
spark.udf.register("day", int2day, IntegerType())
df2 = df.withColumn("Day", day("Day_of_Week"))
并给出了很长的错误
SparkException: Job aborted due to stage failure: Task 0 in stage 7.0 failed 1 times, most recent failure: Lost task 0.0 in stage 7.0 (TID 8, localhost, executor driver): org.apache.spark.api.python.PythonException: Traceback (most recent call last):
File "/databricks/spark/python/pyspark/worker.py", line 262, in main
process()
File "/databricks/spark/python/pyspark/worker.py", line 257, in process
serializer.dump_stream(func(split_index, iterator), outfile)
File "/databricks/spark/python/pyspark/serializers.py", line 325, in dump_stream
self.serializer.dump_stream(self._batched(iterator), stream)
File "/databricks/spark/python/pyspark/serializers.py", line 141, in dump_stream
self._write_with_length(obj, stream)
File "/databricks/spark/python/pyspark/serializers.py", line 151, in _write_with_length
serialized = self.dumps(obj)
File "/databricks/spark/python/pyspark/serializers.py", line 556, in dumps
return pickle.dumps(obj, protocol)
PicklingError: Can't pickle <type 'function'>: attribute lookup __builtin__.function failed
我在这里看不到如何应用How to pass a constant value to Python UDF?,因为他们的示例要简单得多(只有true或false)
我也尝试过使用地图功能,例如PySpark add a column to a DataFrame from a TimeStampType column
但是
df3 = df2.withColumn("weekday", map(lambda x: int2day, col("Date")))
只是说TypeError: argument 2 to map() must support iteration
,但我认为col
确实支持迭代。
我已经在线阅读了所有可以找到的示例。我看不到如何将其他问题问到我的案件中。
如何使用另一列的功能添加另一列?
答案 0 :(得分:1)
您完全不需要在这里使用UDF即可完成您要执行的操作。您可以利用内置的pyspark <!DOCTYPE html>
<html>
<header>
<style>
#element3 {
display: none;
}
</style>
</header>
<body>
<label>Multi Select</label>
<div id="element1">
<p id="element2" contenteditable="true">Select required competencies</p>
</div>
<div id="element3" class="auto-complete-select-dropdown">
<p>One</p>
<p>Two</p>
<p>Three</p>
<p>Four</p>
</div>
<script>
var element1 = document.getElementById("element1");
var element2 = document.getElementById("element2");
var element3 = document.getElementById("element3");
element2.addEventListener("keyup", showDropdown);
element2.addEventListener("focusout", hideDropdown);
element3.addEventListener("click", addSelectedOption);
function showDropdown() {
var element = document.getElementById("element3");
if (element.style.display != "block")
element.style.display = "block";
}
function hideDropdown() {
var element = document.getElementById("element3");
if (element.style.display != "none")
element.style.display = "none";
}
function addSelectedOption(event) {
alert("here");
element = event.target;
var element1 = document.getElementById("element1");
var p = document.createElement('p');
p.textContent = element.textContent.trim();
}
</script>
</body>
</html>
函数在列中给定日期的情况下提取一周中每一天的名称。
date_format
结果是一个新列添加到您的数据框中,名为import pyspark.sql.functions as func
df = df.withColumn("day_of_week", func.date_format(func.col("Date"), "EEEE"))
,它将根据day_of_week
列中的值显示星期日,星期一,星期二等。