假设我有这个二维数组A:
[[0,0,0,0],
[0,0,0,0],
[0,0,0,0],
[0,0,0,4]]
我想对B求和:
[[1,2,3]
[4,5,6]
[7,8,9]]
以A [0] [0]为中心,因此结果为:
array_sum(A,B,0,0) =
[[5,6,0,4],
[8,9,0,0],
[0,0,0,0],
[2,0,0,5]]
我当时想我应该做一个比较它是否在边界上的函数,然后为此调整索引:
def array_sum(A,B,i,f):
...
if i == 0 and j == 0:
A[-1][-1] = A[-1][-1]+B[0][0]
...
else:
A[i-1][j-1] = A[i][j]+B[0][0]
A[i][j] = A[i][j]+B[1][1]
A[i+1][j+1] = A[i][j]+B[2][2]
...
但是我不知道是否有更好的方法,我正在阅读有关广播或为此使用卷积的方法,但是我不确定是否有更好的方法。
答案 0 :(得分:1)
假设B.shape
都是奇数,则可以使用np.indices
,操纵它们以指向所需的位置,然后使用np.add.at
def array_sum(A, B, loc = (0, 0)):
A_ = A.copy()
ix = np.indices(B.shape)
new_loc = np.array(loc) - np.array(B.shape) // 2
new_ix = np.mod(ix + new_loc[:, None, None],
np.array(A.shape)[:, None, None])
np.add.at(A_, tuple(new_ix), B)
return A_
测试:
array_sum(A, B)
Out:
array([[ 5., 6., 0., 4.],
[ 8., 9., 0., 7.],
[ 0., 0., 0., 0.],
[ 2., 3., 0., 5.]])
答案 1 :(得分:0)
通常,拇指切片索引比奇特的索引要快(〜2倍)。即使对于OP中的小示例,这似乎也是正确的。缺点:代码稍微复杂一些。
import numpy as np
from numpy import s_ as _
from itertools import product, starmap
def wrapsl1d(N, n, c):
# check in 1D whether a patch of size n centered at c in a vector
# of length N fits or has to be wrapped around
# return appropriate slice objects for both vector and patch
assert n <= N
l = (c - n//2) % N
h = l + n
# return list of pairs (index into A, index into patch)
# 2 pairs if we wrap around, otherwise 1 pair
return [_[l:h, :]] if h <= N else [_[l:, :N-l], _[:h-N, n+N-h:]]
def use_slices(A, patch, center=(0, 0)):
slAptch = product(*map(wrapsl1d, A.shape, patch.shape, center))
# the product now has elements [(idx0A, idx0ptch), (idx1A, idx1ptch)]
# transpose them:
slAptch = starmap(zip, slAptch)
out = A.copy()
for sa, sp in slAptch:
out[sa] += patch[sp]
return out