我有一个数据框:
genes_1 = c("a","b","c","d","e")
genes_2 = c("f","g","c","e","j")
genes_3 = c("a","b","m","n","o")
df = data.frame(genes_1, genes_2, genes_3)
我想要的输出:
genes_1 = c("","","","d","")
genes_2 = c("f","g","","","j")
genes_3 = c("","","m","n","o")
df = data.frame(genes_1, genes_2, genes_3)
我该如何实现? 谢谢
答案 0 :(得分:4)
0依赖基R解决方案:
data.frame(
genes_1 = c("a","b","c","d","e"),
genes_2 = c("f","g","c","e","j"),
genes_3 = c("a","b","m","n","o"),
stringsAsFactors = FALSE
) -> xdf
dups <- names(which(table(unlist(xdf, use.names = FALSE)) > 1))
xdf[] <- lapply(xdf, function(x) { x[x %in% dups] <- "" ; x })
xdf
unlist()
将所有列递归展开为单个字符向量。
table()
计算每个元素的所有出现次数。
which()
缩小到TRUE
names()
获取字符选择矢量元素。
然后我们按列工作,以替换向量中与""
匹配的所有匹配项
library(microbenchmark)
library(data.table)
microbenchmark(
base = {
ydf <- xdf
dups <- names(which(table(unlist(ydf, use.names = FALSE)) > 1))
ydf[] <- lapply(ydf, function(x) { x[x %in% dups] <- "" ; x })
},
base.2 = {
ydf <- xdf
tmp <- unlist(ydf)
ydf[arrayInd(which(duplicated(tmp) | duplicated(tmp, fromLast = TRUE)), dim(ydf))] <- ""
},
tidyverse = {
ydf <- xdf
ydf %>%
gather(genes, value) %>%
add_count(value) %>%
mutate(value = ifelse(n > 1, "", value)) %>%
select(-n) %>%
group_by(genes) %>%
mutate(ID = 1:n()) %>%
spread(genes, value) %>%
select(-ID) -> ydf
},
data.table = {
ydt <- data.table(xdf)
ydt[,lapply(.SD, function(x) { x[x %in% dups] <- "" ; x })]
}
) %>%
{ print(.) ; . } %>%
autoplot()
答案 1 :(得分:3)
另一个基本解决方案:
tmp <- unlist(df)
df[arrayInd(which(duplicated(tmp) | duplicated(tmp,fromLast=TRUE)), dim(df))] <- NA
# genes_1 genes_2 genes_3
#1 <NA> f <NA>
#2 <NA> g <NA>
#3 <NA> <NA> m
#4 d <NA> n
#5 <NA> j o
unlist
只是为df
中的所有值创建一个长向量
arrayInd
然后创建一个两列的行/列索引,以将df
的子集duplicated
设置为子集。
答案 2 :(得分:2)
这是一个tidyverse
解决方案。 df2
是最终输出。
library(tidyverse)
df2 <- df %>%
gather(genes, value) %>%
add_count(value) %>%
mutate(value = ifelse(n > 1, "", value)) %>%
select(-n) %>%
group_by(genes) %>%
mutate(ID = 1:n()) %>%
spread(genes, value) %>%
select(-ID)