我将运行一些较大的模型,并尝试中间结果。
因此,我尝试在每个时期之后使用检查点来保存最佳模型。
这是我的代码:
model = Sequential()
model.add(LSTM(700, input_shape=(X_modified.shape[1], X_modified.shape[2]), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(700, return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(700))
model.add(Dropout(0.2))
model.add(Dense(Y_modified.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
# Save the checkpoint in the /output folder
filepath = "output/text-gen-best.hdf5"
# Keep only a single checkpoint, the best over test accuracy.
checkpoint = ModelCheckpoint(filepath,
monitor='val_acc',
verbose=1,
save_best_only=True,
mode='max')
model.fit(X_modified, Y_modified, epochs=100, batch_size=50, callbacks=[checkpoint])
但是在第一个时期之后,我仍然收到警告:
/usr/local/lib/python3.6/site-packages/keras/callbacks.py:432: RuntimeWarning: Can save best model only with val_acc available, skipping.
'skipping.' % (self.monitor), RuntimeWarning)
要在模型中添加metrics=['accuracy']
是其他SO问题(例如Unable to save weights while using pre-trained VGG16 model)的解决方案,但是这里的错误仍然存在。
答案 0 :(得分:4)
您正在尝试使用以下代码检查模型
# Save the checkpoint in the /output folder
filepath = "output/text-gen-best.hdf5"
# Keep only a single checkpoint, the best over test accuracy.
checkpoint = ModelCheckpoint(filepath,
monitor='val_acc',
verbose=1,
save_best_only=True,
mode='max')
ModelCheckpoint
将考虑参数monitor
来决定是否保存模型。在您的代码中,它是val_acc
。因此,如果val_acc
增加,它将节省权重。
现在输入适合的代码,
model.fit(X_modified, Y_modified, epochs=100, batch_size=50, callbacks=[checkpoint])
您尚未提供任何验证数据。 ModelCheckpoint
无法保存权重,因为它没有monitor
参数要检查。
要基于val_acc
进行检查,您必须提供一些验证数据。
model.fit(X_modified, Y_modified, validation_data=(X_valid, y_valid), epochs=100, batch_size=50, callbacks=[checkpoint])
如果您不希望出于任何原因使用验证数据并实施检查点,则必须更改ModelCheckpoint
以使其基于acc
或loss
进行工作
# Save the checkpoint in the /output folder
filepath = "output/text-gen-best.hdf5"
# Keep only a single checkpoint, the best over test accuracy.
checkpoint = ModelCheckpoint(filepath,
monitor='acc',
verbose=1,
save_best_only=True,
mode='max')
请记住,如果您要mode
min
到monitor
,则必须将loss
更改为def test_cloning() {
sshagent(["${SSH_KEY}"]) {
sh """
GIT_SSH_COMMAND="ssh -o UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no" \
git clone -b dev git@github.com:/org/repo_eg.git repo_eg/
"""
}
}
pipeline {
agent none
environment {
SSH_KEY='sshkey'
}
stages {
stage('Build') {
parallel {
stage('static_agent') {
agent { label 'agent-1 }
steps {
test_cloning()
}
}
stage('static_agent') {
agent { label 'agent-2' }
steps {
test_cloning()
}
}
stage('swarm') {
agent { label 'swarm' }
steps {
sh 'mkdir ~/.ssh || true && ssh-keyscan github.com > ~/.ssh/known_hosts'
test_cloning()
}
}
}
}
}
post {
always {
node('agent-1') {
deleteDir()
}
node('agent-2') {
deleteDir()
}
}
}
}
答案 1 :(得分:1)
它丢失了,不是因为缺少度量标准,而是因为您没有验证数据。通过validation_data
参数向fit
添加一些,或使用validation_split
。
答案 2 :(得分:1)
我遇到了同样的问题,只需将'val_acc'编辑为'val_accuracy'