我想使用Spark Scala为同一end_date
的更新记录的id
列的值start_date
创建一个id
的新列+---+-----+----------+
| id|Value|start_date|
+---+---- +----------+
| 1 | a | 1/1/2018 |
| 2 | b | 1/1/2018 |
| 3 | c | 1/1/2018 |
| 4 | d | 1/1/2018 |
| 1 | e | 10/1/2018|
+---+-----+----------+
请考虑以下数据框:
id=1
这里1/1/2018
的开始日期是value
,a
是10/1/2018(start_date)
,而在value
上,{{1}的id=1
}成为e
。因此,我必须填充一个新列end_date
,并在id=1
列的所有其他记录的开头填充10/1/2018
和NULL
的值end_date
, / p>
结果应如下所示:
+---+-----+----------+---------+
| id|Value|start_date|end_date |
+---+---- +----------+---------+
| 1 | a | 1/1/2018 |10/1/2018|
| 2 | b | 1/1/2018 |NULL |
| 3 | c | 1/1/2018 |NULL |
| 4 | d | 1/1/2018 |NULL |
| 1 | e | 10/1/2018|NULL |
+---+-----+----------+---------+
我正在使用spark 2.3。
有人可以在这里帮助我吗
答案 0 :(得分:2)
具有窗口功能“ lead”:
val df = List(
(1, "a", "1/1/2018"),
(2, "b", "1/1/2018"),
(3, "c", "1/1/2018"),
(4, "d", "1/1/2018"),
(1, "e", "10/1/2018")
).toDF("id", "Value", "start_date")
val idWindow = Window.partitionBy($"id")
.orderBy($"start_date")
val result = df.withColumn("end_date", lead($"start_date", 1).over(idWindow))
result.show(false)
输出:
+---+-----+----------+---------+
|id |Value|start_date|end_date |
+---+-----+----------+---------+
|3 |c |1/1/2018 |null |
|4 |d |1/1/2018 |null |
|1 |a |1/1/2018 |10/1/2018|
|1 |e |10/1/2018 |null |
|2 |b |1/1/2018 |null |
+---+-----+----------+---------+