我正在尝试估计Weibull-Gamma分布参数,但是遇到以下错误:
“函数mle无法估计参数,错误代码为7”我该怎么办?
Weibull-Gamma分布
密度函数
dWeibullGamma <- function(x, alpha, beta, lambda)
{
((alpha*beta)/(lambda))*(x^(alpha-1))*(1+(1/lambda)*x^(alpha))^(-(beta+1))
}
累计功能
pWeibullGamma <- function(x, alpha, beta, lambda)
{
1-(1+(1/lambda)*x^(alpha))^(-(beta))
}
Harzard函数
hWeibullGamma <- function(x, alpha, beta, lambda)
{
((alpha*beta)/(lambda))*(x^(alpha-1))*(1+(1/lambda)*x^(alpha))^(-(beta+1))/(1+(1/lambda)*x^(alpha))^(-(beta))
}
生存功能
sWeibullGamma <- function(x,alpha,beta,lambda)
{
(1+(1/lambda)*x^(alpha))^(-(beta))
}
估算
paramWG = fitdist(data = dadosp, distr = 'WeibullGamma', start = c(alpha=1.5,beta=1,lambda=1.5), lower= c(0, 0))
summary(paramWG)
[https://i.stack.imgur.com/XDxwC.png][1]图片
Sample:
dadosp = c(240.3,71.9,271.3, 186.3,241,253,287.4,138.3,206.9,176,270.4,73.3,118.9,203.1,139.7,31,269.6,140.2,205.1,133.2,107,354.6,277,27.6,186,260.9,350.4,242.6,292.5, 112.3,242.8,310.7,309.9,53.1,326.5,145.7,271.5, 117.5,264.7,243.9,182,136.7,103.8,188.3,236,419.8,338.6,357.7)
答案 0 :(得分:1)
对于您的样本,估计ML时算法不会收敛。将Weibull-Gamma分布拟合到此数据将需要极高的lambda
值。您可以通过估算log10(lambda)
而不是lambda
来解决此问题。
您可以在4个函数中添加lambda <- 10^lambda
,例如
dWeibullGamma <- function(x, alpha, beta, lambda)
{
lambda <- 10^lambda
((alpha*beta)/(lambda))*(x^(alpha-1))*(1+(1/lambda)*x^(alpha))^(-(beta+1))
}
然后,该算法似乎收敛了:
library(fitdistrplus)
paramWG = fitdist(data = data, distr = 'WeibullGamma',
start = list(alpha=1, beta=1, lambda=1), lower = c(0, 0, 0))
summary(paramWG)$estimate
输出:
alpha beta lambda
2.432939 799.631852 8.680802
我们看到lambda的估计为10^8.68
,因此在不获取对数时会出现收敛问题。
您也可以按照以下方式查看其拟合度:
newx <- 0:500
pars <- summary(paramWG)$estimate
pred <- dWeibullGamma(newx, pars["alpha"], pars["beta"], pars["lambda"])
hist(data, freq = FALSE)
lines(newx, pred, lwd = 2)
注意:也许适合其他发行版会更有意义?