我目前正在尝试训练模型,并且从此答案here开始,我的输入管道已构建。我想在每个时期后保存我的模型。但是经过一段时间的训练之后,训练崩溃了。我已经读到它是因为它将输入作为常数张量添加到图形中。建议使用tf.placeholder
来解决问题的解决方案here。不幸的是,这并不能解决我的问题。输入管道如下所示
....
filenames = [P_1]
dataset = tf.data.TFRecordDataset(filenames)
def _parse_function(example_proto):
keys_to_features = { 'data':tf.VarLenFeature(tf.float32)},
parsed_features = tf.parse_single_example(example_proto, keys_to_features)
return tf.sparse_tensor_to_dense(parsed_features['data'
# Parse the record into tensors.
dataset = dataset.map(_parse_function)
# Shuffle the dataset
dataset = dataset.shuffle(buffer_size=1000)
# Repeat the input indefinitly
dataset = dataset.repeat()
# Generate batches
dataset = dataset.batch(Batch_size)
# Create a one-shot iterator
iterator = dataset.make_one_shot_iterator()
data = iterator.get_next()
....
for i in range(epochs):
for ii in range(iteration):
image = sess.run(data)
....
saver.save(sess, 'filename')
错误消息如下所示
[libprotobuf FATAL external/protobuf_archive/src/google/protobuf/message_lite.cc:68] CHECK failed: (byte_size_before_serialization) == (byte_size_after_serialization): tensorflow.GraphDef was modified concurrently during serialization.
terminate called after throwing an instance of 'google::protobuf::FatalException'
what(): CHECK failed: (byte_size_before_serialization) == (byte_size_after_serialization): tensorflow.GraphDef was modified concurrently during serialization.
Aborted
答案 0 :(得分:1)
问题似乎出在_parse_function
中。创建TFrecord文件时,请确保解析器以相同的方式进行操作。例如,如果它们具有相同的数据类型