我尝试通过将整数矩阵分成较小的矩阵块来优化整数矩阵倍数,以在树莓派3b +上获得更好的缓存命中率(它是Cortex-A53内核,具有64行字节的缓存,具有4路关联性。{{ 3}})。
代码如下:
#define L1_D_CACHE_SZ 32 * 1024
size_t cache_tune_g = 32;
void mat_mul(int *A, int *B, int *C, size_t M, size_t N, size_t strideA, size_t strideB, size_t strideC) {
for(int i = 0; i < M; i++) {
int *Ai = A + (N + strideA) * i;
for(int j = 0; j < M; j++) {
int sum = 0;
int *Bj = B + j;
for (int k = 0; k < N; k++) {
int *Aik = Ai + k;
int *Bjk = Bj + (M + strideB) * k;
sum += (*Aik) * (*Bjk);
}
int *Cij = C + (M + strideC) * i + j;
*Cij = (*Cij) + sum;
}
}
}
// if B 'fits' into L1 data cache, then do the multiplication,
// else divide A and B into 4 sub-matrixes and then call itself recursively.
void mat_mul_opt(int *A, int *B, int *C, size_t M, size_t N, size_t strideA, size_t strideB, size_t strideC) {
int B_size = sizeof(int) * M * N;
if (B_size < L1_D_CACHE_SZ/cache_tune_g) {
mat_mul(A, B, C, M, N, strideA, strideB, strideC);
} else {
size_t M_sub = M / 2;
size_t N_sub = N / 2;
size_t strideA_sub = N_sub + strideA;
size_t strideB_sub = M_sub + strideB;
size_t strideC_sub = M_sub + strideC;
int *A1 = A;
int *A2 = A + N_sub;
int *A3 = A + (N + strideA) * M_sub;
int *A4 = A3 + N_sub;
int *B1 = B;
int *B2 = B + M_sub;
int *B3 = B + (M + strideB) * N_sub;
int *B4 = B3 + M_sub;
int *C1 = C;
int *C2 = C + M_sub;
int *C3 = C + (M + strideC) * M_sub;
int *C4 = C3 + M_sub;
// due to the result in C is accumulated, order here matters.
mat_mul_opt(A1, B1, C1, M_sub, N_sub, strideA_sub, strideB_sub, strideC_sub);
mat_mul_opt(A2, B3, C1, M_sub, N_sub, strideA_sub, strideB_sub, strideC_sub);
mat_mul_opt(A1, B2, C2, M_sub, N_sub, strideA_sub, strideB_sub, strideC_sub);
mat_mul_opt(A2, B4, C2, M_sub, N_sub, strideA_sub, strideB_sub, strideC_sub);
mat_mul_opt(A3, B1, C3, M_sub, N_sub, strideA_sub, strideB_sub, strideC_sub);
mat_mul_opt(A4, B3, C3, M_sub, N_sub, strideA_sub, strideB_sub, strideC_sub);
mat_mul_opt(A3, B2, C4, M_sub, N_sub, strideA_sub, strideB_sub, strideC_sub);
mat_mul_opt(A4, B4, C4, M_sub, N_sub, strideA_sub, strideB_sub, strideC_sub);
}
}
这是性能结果:
1,244,238,488 cache-references:u (87.41%)
193,808,545 cache-misses:u # 15.576 % of all cache refs (87.42%)
192,979,016 L1-dcache-load-misses:u (75.14%)
6,651,396,875 cycles:u (87.59%)
3,499,761,427 instructions:u # 0.53 insn per cycle (87.62%)
539,801,098 branches:u (87.62%)
1,632,374 armv7_cortex_a7/l2d_cache_refill/:u (87.48%)
4.847838433 seconds time elapsed
在测试中,我将A设置为1024x512
,将B设置为512x1024
。然后到达262144
函数的mat_mul
调用,并且在MxN
的最后调用中16x8
是mat_mul
。
我对缓存丢失的计算比性能结果少,这里是:
因为矩阵A为16x8,而B为8x16,则B的每一行(16* sizeof(int) = 64 Byte
)都适合一个L1高速缓存行。而且,A和B现在都应该适合L1高速缓存(16*8*2*sizeof(int) = 1024 Byte
,我假设有32KB L1D高速缓存,并且关联被认为是4向的,1024 Byte
也应该可以适合它)。因此,mat_mul
中具有A(16x8
和B(8x16
)的计算应包含16 + 8 = 24
个L1缓存缺失。因此在整个计算中有262,144 * 24 = 6,291,456
个缓存丢失。
但是perf的结果表明存在192,979,016
个缓存丢失。是我预期的30
倍。
所以我的问题是我在这里的计算出了什么问题?还是缺少额外的缓存的地方是哪里?
我还使用perf来记录丢失的L1 D缓存来自何处,结果如下所示。如果从mat_mul
中丢失了99%,而在mat_mul
中丢失了80%,则来自最内层的循环行:sum += (*Aik) * (*Bjk);
。
1.21 │ 9c:┌─→ldr r0, [r3], #4
2.84 │ │ ldr ip, [r1], fp
│ │ cmp lr, r3
80.42 │ │ mla r2, ip, r0, r2
│ └──bne 9c
谢谢!