我正在尝试使用python中的nlp或scapy库从txt文件提取位置名称,国家名称,城市名称,旅游景点。
我在下面尝试过:
Nothing
获取输出:
import spacy
en = spacy.load('en')
sents = en(open('subtitle.txt').read())
place = [ee for ee in sents.ents]
我只想要位置名称,国家/地区名称,城市名称以及城市中的任何地方。
我也尝试使用NLP:
[1,
, three, London,
,
,
,
, first,
,
, 00:00:20,520,
,
, London, the
4
00:00:20,520, 00:00:26,130
, Buckingham Palace,
,
输出获取:
import nltk
nltk.download('maxent_ne_chunker')
nltk.download('words')
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
nltk.download('stopwords')
with open('subtitle.txt', 'r') as f:
sample = f.read()
sentences = nltk.sent_tokenize(sample)
tokenized_sentences = [nltk.word_tokenize(sentence) for sentence in sentences]
tagged_sentences = [nltk.pos_tag(sentence) for sentence in tokenized_sentences]
chunked_sentences = nltk.ne_chunk_sents(tagged_sentences, binary=True)
def extract_entity_names(t):
entity_names = []
if hasattr(t, 'label') and t.label:
if t.label() == 'NE':
entity_names.append(' '.join([child[0] for child in t]))
else:
for child in t:
entity_names.extend(extract_entity_names(child))
return entity_names
entity_names = []
for tree in chunked_sentences:
# Print results per sentence
#print (extract_entity_names(tree))
entity_names.extend(extract_entity_names(tree))
# Print all entity names
#print (entity_names)
# Print unique entity names
print (set(entity_names))
在这里,还会出现不需要的单词,例如“好”,“ PDF”,“本地向导”和一些地方。
请提出建议。
编辑1
脚本
{'Okay', 'Buckingham Palace', 'Darwin Brasserie', 'PDF', 'London', 'Local Guide', 'Big Ben'}
通过使用回答的脚本:达到输出以下
import spacy
nlp = spacy.load('en_core_web_lg')
gpe = [] # countries, cities, states
loc = [] # non gpe locations, mountain ranges, bodies of water
doc = nlp(open('subtitle.txt').read())
for ent in doc.ents:
if (ent.label_ == 'GPE'):
gpe.append(ent.text)
elif (ent.label_ == 'LOC'):
loc.append(ent.text)
cities = []
countries = []
other_places = []
import wikipedia
for text in gpe:
summary = str(wikipedia.summary(text))
if ('city' in summary):
cities.append(text)
print (cities)
elif ('country' in summary):
countries.append(text)
print (countries)
else:
other_places.append(text)
print (other_places)
for text in loc:
other_places.append(text)
print (other_places)
答案 0 :(得分:1)
您正在寻找命名实体。 spaCy是用于在文本中查找命名实体的高效库,但是您应该在文档中相应地使用它。
您正在寻找位置,国家和城市。这些位置属于spaCy NER标记器中的GPE和LOC类别。具体来说,GPE适用于国家,城市和州,LOC适用于非GPE地点,山脉,水域等。
如果只需要这些名称到列表中,则可以使用NER标记器,仅查找这些标记。例如,如果您需要将城市与国家分开,则可以执行Wikipedia查询并检查摘要以找出它是城市还是国家。为此,您可能会发现python的维基百科库很有用。
示例代码:
import spacy
nlp = spacy.load('en_core_web_lg')
gpe = [] # countries, cities, states
loc = [] # non gpe locations, mountain ranges, bodies of water
doc = nlp(open('subtitle.txt').read())
for ent in doc.ents:
if (ent.label_ == 'GPE'):
gpe.append(ent.text)
elif (ent.label_ == 'LOC'):
loc.append(ent.text)
cities = []
countries = []
other_places = []
import wikipedia
for text in gpe:
summary = str(wikipedia.summary(text))
if ('city' in summary):
cities.append(text)
elif ('country' in summary):
countries.append(text)
else:
other_places.append(text)
for text in loc:
other_places.append(text)
如果您发现Wikipedia方法不足或运行缓慢,也可以尝试使用自己的NER标签来训练NER标签。为此,请看here。