TensorflowSharp的Tensorflow Python Frozen_graph

时间:2018-10-02 16:45:36

标签: python python-3.x tensorflow tensorflowsharp

我通过遵循在线人体检测教程来进行了tensorflow python scipt。此实现将OpenCV和Tensorflow结合在一起以检测人并在人所在的屏幕上绘图。

我的问题是我现在在python中工作,为了将模型加载到TensorflowSharp以在Unity中使用,我需要将模型保存为.bytes格式。

我一直在尝试遵循this教程。以及this文档。

很明显,我必须使用freeze_graph函数,这是我认为必须在设置Python环境中进行一些固定的地方。

在我的新代码段中,此行之后:

freeze_graph.freeze_graph(input_graph = 'G:/TensorflowHumanDetectino/faster_rcnn_inception_v2_coco_2018_01_28/frozen_inference_graph.pb',
                        input_binary = True,
                        input_checkpoint = 'G:/TensorflowHumanDetectino/faster_rcnn_inception_v2_coco_2018_01_28/model.ckpt',
                        output_node_names = node_names,
                        output_graph = 'G:/TensorHumanDetect/faster_rcnn_inception_v2_coco_2018_01_28/frozen_inference_graph_test.bytes' ,
                        clear_devices = True, initializer_nodes = "",input_saver = "",
                        restore_op_name = "save/restore_all", filename_tensor_name = "save/image_tensor:0")

我收到此错误:

  

发生异常:AttributeError'NoneType'对象没有   属性“写入”文件“ G:\ tensorhumandetect \ test.py”,第40行,在          restore_op_name =“ save / restore_all”,filename_tensor_name =“ save / image_tensor:0”)

代码:

import tensorflow as tf
# freeze_graph "screenshots" the graph from tensorflow.python.tools import freeze_graph
# optimize_for_inference lib optimizes this frozen graph from tensorflow.python.tools import optimize_for_inference_lib

# os and os.path are used to create the output file where we save our frozen graphs import os import os.path as path

path_to_ckpt = 'G:/TensorflowHumanDetectino/faster_rcnn_inception_v2_coco_2018_01_28/frozen_inference_graph.pb' detection_graph = tf.Graph() with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
    with tf.gfile.GFile(path_to_ckpt, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')

default_graph = detection_graph.as_default() sess = tf.Session(graph=detection_graph)

        # Definite input and output Tensors for detection_graph image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
        # Each box represents a part of the image where a particular object was detected. detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
        # Each score represent how level of confidence for each of the objects.
        # Score is shown on the result image, together with the class label. detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') detection_classes = detection_graph.get_tensor_by_name('detection_classes:0') num_detections = detection_graph.get_tensor_by_name('num_detections:0')

node_names = [node.name for node in tf.get_default_graph().as_graph_def().node] freeze_graph.freeze_graph(input_graph = 'G:/TensorflowHumanDetectino/faster_rcnn_inception_v2_coco_2018_01_28/frozen_inference_graph.pb',
                        input_binary = True,
                        input_checkpoint = 'G:/TensorflowHumanDetectino/faster_rcnn_inception_v2_coco_2018_01_28/model.ckpt',
                        output_node_names = node_names,
                        output_graph = 'G:/TensorHumanDetect/faster_rcnn_inception_v2_coco_2018_01_28/frozen_inference_graph_test.bytes' ,
                        clear_devices = True, initializer_nodes = "",input_saver = "",
                        restore_op_name = "save/restore_all", filename_tensor_name = "save/image_tensor:0")

人员检测的工作示例:

import numpy as np
import tensorflow as tf
from tensorflow.python.tools import freeze_graph
import cv2
import time
import json
import io
import sys
import os

class DetectorAPI:

    def __init__(self, path_to_ckpt):
        self.path_to_ckpt = path_to_ckpt
        self.detection_graph = tf.Graph()
        with self.detection_graph.as_default():
            od_graph_def = tf.GraphDef()
            with tf.gfile.GFile(self.path_to_ckpt, 'rb') as fid:
                serialized_graph = fid.read()
                od_graph_def.ParseFromString(serialized_graph)
                tf.import_graph_def(od_graph_def, name='')

        self.default_graph = self.detection_graph.as_default()
        self.sess = tf.Session(graph=self.detection_graph)

        # Definite input and output Tensors for detection_graph
        self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0')
        # Each box represents a part of the image where a particular object was detected.
        self.detection_boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0')
        # Each score represent how level of confidence for each of the objects.
        # Score is shown on the result image, together with the class label.
        self.detection_scores = self.detection_graph.get_tensor_by_name('detection_scores:0')
        self.detection_classes = self.detection_graph.get_tensor_by_name('detection_classes:0')
        self.num_detections = self.detection_graph.get_tensor_by_name('num_detections:0')

    def processFrame(self, image):

        # Expand dimensions since the trained_model expects images to have shape: [1, None, None, 3]
        image_np_expanded = np.expand_dims(image, axis=0)
        # Actual detection.
        #start_time = time.time()
        (boxes, scores, classes, num) = self.sess.run(
            [self.detection_boxes, self.detection_scores, self.detection_classes, self.num_detections],
            feed_dict={self.image_tensor: image_np_expanded})
        #end_time = time.time()

        #print("Elapsed Time:", end_time-start_time)

        im_height, im_width,_ = image.shape
        boxes_list = [None for i in range(boxes.shape[1])]
        for i in range(boxes.shape[1]):
            boxes_list[i] = (int(boxes[0,i,0] * im_height),
                        int(boxes[0,i,1]*im_width),
                        int(boxes[0,i,2] * im_height),
                        int(boxes[0,i,3]*im_width))

        return boxes_list, scores[0].tolist(), [int(x) for x in classes[0].tolist()], int(num[0])

    def close(self):
        self.sess.close()
        self.default_graph.close()

if __name__ == "__main__":
    model_path = 'G:/TensorflowHumanDetectino/faster_rcnn_inception_v2_coco_2018_01_28/frozen_inference_graph.pb'
    odapi = DetectorAPI(path_to_ckpt=model_path)
    threshold = 0.7
    #cap = cv2.VideoCapture('G:/TensorflowHumanDetectino/TownCentreXVID.avi')
    cap = cv2.VideoCapture(0)

    while True:
        r, img = cap.read()
        img = cv2.resize(img, (1280, 720))

        boxes, scores, classes , num = odapi.processFrame(img)
        myfile = open('HumanLocations.txt','w') 
        # Visualization of the results of a detection.

        for i in range(len(boxes)):
            # Class 1 represents human
            if classes[i] == 1 and scores[i] > threshold:
                box = boxes[i]
                cv2.rectangle(img,(box[1],box[0]),(box[3],box[2]),(255,0,0),2)


                myfile.write(str(boxes[i][0])+','+str(boxes[i][1])+','+str(boxes[i][2])+','+str(boxes[i][3])+'|') 

        myfile.close() 
        cv2.imshow("preview", img)
        key = cv2.waitKey(1)
        if key & 0xFF == ord('q'):
            break

另一个奇怪的信息可能是不正确的环境设置的线索,是当我尝试打印任何值(甚至是纯字符串)时,都会出现此错误:

  

发生异常:AttributeError'NoneType'对象没有   属性“写入”文件“ G:\ tensorhumandetect \ test.py”,第11行          打印('测试!')

这基本上与我获得的Frozen_graph行相同。我是python的新手,更多是c#的人,对我们的帮助将不胜感激。 我正在使用Python 3.6.6,并使用anaconda安装了模块,并在Visual Studio Code中运行我的项目。

0 个答案:

没有答案