我找到了有关print activation maps的GitHub示例。代码很简单。我所做的就是复制粘贴功能。
def get_activations(model, model_inputs, print_shape_only=False, layer_name=None):
print('----- activations -----')
activations = []
inp = model.input
model_multi_inputs_cond = True
if not isinstance(inp, list):
# only one input! let's wrap it in a list.
inp = [inp]
model_multi_inputs_cond = False
outputs = [layer.output for layer in model.layers if
layer.name == layer_name or layer_name is None] # all layer outputs
funcs = [K.function(inp + [K.learning_phase()], [out]) for out in outputs] # evaluation functions
if model_multi_inputs_cond:
list_inputs = []
list_inputs.extend(model_inputs)
list_inputs.append(0.)
else:
list_inputs = [model_inputs, 0.]
print list_inputs
layer_outputs = [func(list_inputs)[0] for func in funcs]
for layer_activations in layer_outputs:
activations.append(layer_activations)
if print_shape_only:
print(layer_activations.shape)
else:
print(layer_activations)
return activations
然后我通过了模型和输入。但是,它会产生此错误
Traceback (most recent call last):
File "test_cnn_128.py", line 80, in <module>
get_activations(model, test_x)
File "test_cnn_128.py", line 45, in get_activations
layer_outputs = [func(list_inputs)[0] for func in funcs]
File "/usr/local/lib/python2.7/dist-packages/keras/backend/tensorflow_backend.py", line 2666, in __call__
return self._call(inputs)
File "/usr/local/lib/python2.7/dist-packages/keras/backend/tensorflow_backend.py", line 2635, in _call
session)
File "/usr/local/lib/python2.7/dist-packages/keras/backend/tensorflow_backend.py", line 2587, in _make_callable
callable_fn = session._make_callable_from_options(callable_opts)
File "/home/fatima/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 1414, in _make_callable_from_options
return BaseSession._Callable(self, callable_options)
File "/home/fatima/.local/lib/python2.7/site-packages/tensorflow/python/client/session.py", line 1368, in __init__
session._session, options_ptr, status)
File "/home/fatima/.local/lib/python2.7/site-packages/tensorflow/python/framework/errors_impl.py", line 519, in __exit__
c_api.TF_GetCode(self.status.status))
tensorflow.python.framework.errors_impl.InvalidArgumentError: input_1:0 is both fed and fetched.
Exception tensorflow.python.framework.errors_impl.InvalidArgumentError: InvalidArgumentError() in <bound method _Callable.__del__ of <tensorflow.python.client.session._Callable object at 0x7f44de0cd210>> ignored
我不确定如何解决此问题。
答案 0 :(得分:2)
正如我在线程Keras, How to get the output of each layer?上发布的那样,解决此问题的方法是替换行select * from s.t where h_code = 'KGD78' and h_no = '265'
outputs = [layer.output for layer in model.layers if
layer.name == layer_name or layer_name is None]
答案 1 :(得分:0)
从输出/获取层中排除输入层(这就是为什么错误显示“ fed&fetch”的原因-无法从输入层(Feed)本身获取输入(Feed)的输出(获取))>
outputs = [layer.output for layer in model.layers if
layer.name == layer_name or layer_name is None][1:]
或通过完全删除图层名称填充;
outputs = [layer.output for layer in model.layers][1:]
应解决该问题(最后是通知-> [1:]
,这是针对您问题的简单解决方法)