我定期检查我的MongoDB日志文件以查找慢查询并解决它。今天,我看到一个查询花费了124毫秒,而且非常高!
2018-09-29T18:19:57.016+0330 I COMMAND [conn17674] command DataCrm.Ticket command: find { find: "Ticket", filter: { Jobs: { $elemMatch: { User: ObjectId('577370ae55477005ec9b657c') } } }, sort: { TicketNumber: -1 }, skip: 0, limit: 100, lsid: { id: UUID("dcf13400-816e-4b50-8591-654ac4d1daab") }, $db: "DataCrm" } planSummary: IXSCAN { Jobs.User: 1 } keysExamined:6496 docsExamined:6496 hasSortStage:1 cursorExhausted:1 numYields:53 nreturned:100 reslen:246821 locks:{ Global: { acquireCount: { r: 108 } }, Database: { acquireCount: { r: 54 } }, Collection: { acquireCount: { r: 54 } } } protocol:op_query 124ms
如您所见,我在“ Jobs.User”上有一个索引。所以我在shell中测试了这个查询:
db.getCollection("Ticket").find({ Jobs: { $elemMatch: { User: ObjectId('577370ae55477005ec9b657c') } } }).sort({ TicketNumber: -1 }).skip(0).limit(100).explain("executionStats");
结果如下:
{
"queryPlanner" : {
"plannerVersion" : 1.0,
"namespace" : "DataCrm.Ticket",
"indexFilterSet" : false,
"parsedQuery" : {
"Jobs" : {
"$elemMatch" : {
"User" : {
"$eq" : ObjectId("577370ae55477005ec9b657c")
}
}
}
},
"winningPlan" : {
"stage" : "LIMIT",
"limitAmount" : 100.0,
"inputStage" : {
"stage" : "FETCH",
"filter" : {
"Jobs" : {
"$elemMatch" : {
"User" : {
"$eq" : ObjectId("577370ae55477005ec9b657c")
}
}
}
},
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"TicketNumber" : 1.0
},
"indexName" : "TicketNumber_1",
"isMultiKey" : false,
"multiKeyPaths" : {
"TicketNumber" : [
]
},
"isUnique" : true,
"isSparse" : false,
"isPartial" : false,
"indexVersion" : 2.0,
"direction" : "backward",
"indexBounds" : {
"TicketNumber" : [
"[MaxKey, MinKey]"
]
}
}
}
},
"rejectedPlans" : [
{
"stage" : "SORT",
"sortPattern" : {
"TicketNumber" : -1.0
},
"limitAmount" : 100.0,
"inputStage" : {
"stage" : "SORT_KEY_GENERATOR",
"inputStage" : {
"stage" : "FETCH",
"filter" : {
"Jobs" : {
"$elemMatch" : {
"User" : {
"$eq" : ObjectId("577370ae55477005ec9b657c")
}
}
}
},
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"Jobs.User" : 1.0
},
"indexName" : "Jobs.User_1",
"isMultiKey" : true,
"multiKeyPaths" : {
"Jobs.User" : [
"Jobs"
]
},
"isUnique" : false,
"isSparse" : false,
"isPartial" : false,
"indexVersion" : 2.0,
"direction" : "forward",
"indexBounds" : {
"Jobs.User" : [
"[ObjectId('577370ae55477005ec9b657c'), ObjectId('577370ae55477005ec9b657c')]"
]
}
}
}
}
}
]
},
"executionStats" : {
"executionSuccess" : true,
"nReturned" : 100.0,
"executionTimeMillis" : 13.0,
"totalKeysExamined" : 640.0,
"totalDocsExamined" : 640.0,
"executionStages" : {
"stage" : "LIMIT",
"nReturned" : 100.0,
"executionTimeMillisEstimate" : 0.0,
"works" : 641.0,
"advanced" : 100.0,
"needTime" : 540.0,
"needYield" : 0.0,
"saveState" : 10.0,
"restoreState" : 10.0,
"isEOF" : 1.0,
"invalidates" : 0.0,
"limitAmount" : 100.0,
"inputStage" : {
"stage" : "FETCH",
"filter" : {
"Jobs" : {
"$elemMatch" : {
"User" : {
"$eq" : ObjectId("577370ae55477005ec9b657c")
}
}
}
},
"nReturned" : 100.0,
"executionTimeMillisEstimate" : 0.0,
"works" : 640.0,
"advanced" : 100.0,
"needTime" : 540.0,
"needYield" : 0.0,
"saveState" : 10.0,
"restoreState" : 10.0,
"isEOF" : 0.0,
"invalidates" : 0.0,
"docsExamined" : 640.0,
"alreadyHasObj" : 0.0,
"inputStage" : {
"stage" : "IXSCAN",
"nReturned" : 640.0,
"executionTimeMillisEstimate" : 0.0,
"works" : 640.0,
"advanced" : 640.0,
"needTime" : 0.0,
"needYield" : 0.0,
"saveState" : 10.0,
"restoreState" : 10.0,
"isEOF" : 0.0,
"invalidates" : 0.0,
"keyPattern" : {
"TicketNumber" : 1.0
},
"indexName" : "TicketNumber_1",
"isMultiKey" : false,
"multiKeyPaths" : {
"TicketNumber" : [
]
},
"isUnique" : true,
"isSparse" : false,
"isPartial" : false,
"indexVersion" : 2.0,
"direction" : "backward",
"indexBounds" : {
"TicketNumber" : [
"[MaxKey, MinKey]"
]
},
"keysExamined" : 640.0,
"seeks" : 1.0,
"dupsTested" : 0.0,
"dupsDropped" : 0.0,
"seenInvalidated" : 0.0
}
}
}
},
"serverInfo" : {
"host" : "VM1",
"port" : 27017.0,
"version" : "3.6.2",
"gitVersion" : "489d177dbd0f0420a8ca04d39fd78d0a2c539420"
},
"ok" : 1.0
}
您可以看到执行时间仅为13ms,这是一个合理的时间。我不了解消耗124毫秒的记录查询会发生什么情况!有人有主意吗?
答案 0 :(得分:0)
您会看到获胜的计划是LIMIT -> IXSCAN
。这意味着mongodb引擎决定使用index(TicketNumber: 1)
进行排序,并继续检查匹配项,直到达到限制数为止。
我的错误是我在TicketNumber字段上有一个升序索引,并且查询试图对降序进行排序。
现在,我添加了index(TicketNumber: -1)
,现在执行时间减少到只有26ms!