我想进行文本挖掘分析,但遇到任何麻烦。 使用dput(),我只加载文本的一小部分。
for (unsigned int l = 0; l < scene->mNumMeshes; l++)
(NA是偶然的。) 正文是支票中产品的名称。
我想对任何相似的名称进行分组。
例如。在这里,我手动采用MAKFA makar(乌克兰名称)。我发现text<-structure(list(ID_C_REGCODES_CASH_VOUCHER = c(3941L, 3941L, 3941L,
3945L, 3945L, 3945L, 3945L, 3945L, 3945L, 3945L, 3953L, 3953L,
3953L, 3953L, 3953L, 3953L, 3960L, 3960L, 3960L, 3960L, 3960L,
3960L, 3967L, 3967L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), GOODS_NAME = structure(c(19L,
17L, 15L, 18L, 16L, 23L, 21L, 14L, 22L, 20L, 6L, 2L, 10L, 8L,
7L, 13L, 5L, 11L, 7L, 12L, 4L, 3L, 9L, 9L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L
), .Label = c("", "* 2108609 SLOB.Mayon.OLIVK.67% 400ml", "* 3014084 D.Dym.Spikachki DEREVEN.MINI 1kg",
"* 3398012 DD Kolb.SERV.OKHOTN in / to v / y0.35", "* 3426789 WH.The corn rav guava / yagn.d / CAT seed 85g",
"197 Onion 1 kg", "2013077 MAKFA Makar.RAKERS 450g", "2030918 MARIA TRADITIONAL Biscuit 180g",
"2049750 MAKFA Makar.SHIGHTS 450g", "3420159 LEBED.Mol.past.3,4-4,5% 900g",
"3491144 LIP.NAP.ICE TEA green yellow 0.5 liter", "6788 MAKFA Makar.perya 450g",
"809 Bananas 1kg", "FetaXa Cheese product 60% 400g (", "Lemons 55+",
"MAKFA Macaroni feathers like. in / with", "Napkins paper color 100pcs PL",
"Package \"Magnet\" white (Plastiktre)", "Pasta Makfa snail flow-pack 450 g.",
"SHEBEKINSKIE Macaroni Butterfly №40", "SOFT Cotton sticks 100 PE (BELL",
"TENDER AGE Cottage cheese 10", "TOBUS steering-wheel 0.5kg flow"
), class = "factor")), .Names = c("ID_C_REGCODES_CASH_VOUCHER",
"GOODS_NAME"), class = "data.frame", row.names = c(NA, -61L))
"root or key word MAKFA Makar"
所有产品位置均具有相同的词根。
MAKFA Makar不能像Pasta Makfa snail flow-pack 450 g.
MAKFA Macaroni feathers like. in / with
2013077 MAKFA Makar.RAKERS 450g
2013077 MAKFA Makar.RAKERS 450g
6788 MAKFA Makar.perya 450g
2049750 MAKFA Makar.SHIGHTS 450g
2049750 MAKFA Makar.SHIGHTS 450g
这样
作为输出,我想得到
MFAMKR
我该如何通过词根对产品进行分类?(相反,Makar.Makfa,cheese等词中存在相同的模式)
答案 0 :(得分:2)
我认为您可以通过清洗然后将文本聚类而到达所需的位置-这是一个入门工具:
text <- text[1:24,]
library(quanteda)
library(tidyverse)
hc <- text %>%
pull(GOODS_NAME) %>%
as.character %>%
quanteda::tokens(
remove_numbers = T,
remove_punct = T,
remove_symbols = T,
remove_separators = T
) %>%
quanteda::tokens_tolower() %>%
quanteda::tokens_remove(valuetype="regex", pattern = c("^\\d.*")) %>%
quanteda::dfm() %>%
textstat_simil(method = "jaccard") %>%
magrittr::multiply_by(-1) %>%
`attr<-`("Labels", text$GOODS_NAME) %>%
hclust(method = "average")
pdf(tf<-tempfile(fileext = ".pdf"), width = 20, height = 10)
plot(hc)
dev.off()
shell.exec(tf)
clusters <- cutree(hc, h = -0.1)
split(text, clusters)
答案 1 :(得分:2)
这是一种可以在其中搜索单词的向量的方法:
patt <- c("MAKFA Makar.", "kolb","Spikachki", "Bananas", "Lemons",
"Napkins paper", "Cotton sticks","SHEBEKINSKIE Macaroni","CAT seed","Cheese",
"TEA", "Biscuit", "Onion", "steering-wheel", "Package (Plastiktre)",
"Mayon", "Cottage", "cheese")
lst <-lapply(patt, function(x) text[grep(x,text$GOODS_NAME), ])
do.call(rbind.data.frame, lst)
ID_C_REGCODES_CASH_VOUCHER GOODS_NAME
15 3953 2013077 MAKFA Makar.RAKERS 450g
19 3960 2013077 MAKFA Makar.RAKERS 450g
20 3960 6788 MAKFA Makar.perya 450g
23 3967 2049750 MAKFA Makar.SHIGHTS 450g
24 3967 2049750 MAKFA Makar.SHIGHTS 450g
22 3960 * 3014084 D.Dym.Spikachki DEREVEN.MINI 1kg
16 3953 809 Bananas 1kg
3 3941 Lemons 55+
2 3941 Napkins paper color 100pcs PL
7 3945 SOFT Cotton sticks 100 PE (BELL
10 3945 SHEBEKINSKIE Macaroni Butterfly №40
17 3960 * 3426789 WH.The corn rav guava / yagn.d / CAT seed 85g
8 3945 FetaXa Cheese product 60% 400g (
18 3960 3491144 LIP.NAP.ICE TEA green yellow 0.5 liter
14 3953 2030918 MARIA TRADITIONAL Biscuit 180g
11 3953 197 Onion 1 kg
6 3945 TOBUS steering-wheel 0.5kg flow
12 3953 * 2108609 SLOB.Mayon.OLIVK.67% 400ml
9 3945 TENDER AGE Cottage cheese 10
91 3945 TENDER AGE Cottage cheese 10