教我pandas dataframe做到这一点的方法吗?

时间:2018-09-08 15:11:53

标签: python pandas dataframe

我正在努力使用Pandas Data Frames从电子表格转换为Python。

我有一些原始数据:

Date        Temperature
12/4/2003   100
12/5/2003   101
12/8/2003   100
12/9/2003   102
12/10/2003  101
12/11/2003  100
12/12/2003  99
12/15/2003  98
12/16/2003  97
12/17/2003  96
12/18/2003  95
12/19/2003  96
12/22/2003  97
12/23/2003  98
12/24/2003  99
12/26/2003  100
12/29/2003  101

在电子表格中,我正在跟踪基于%monitor的趋势。将其视为滚动平均值,但基于%。

电子表格的输出:

date         temp   monitor   trend        change_in_trend
12/4/2003    100    97.00      warming      false
12/5/2003    101    97.97      warming      false
12/8/2003    100    97.97      warming      false
12/9/2003    102    98.94      warming      false
12/10/2003   101    98.94      warming      false
12/11/2003   100    98.94      warming      false
12/12/2003    99    98.94      warming      false
12/15/2003    98    98.94      cooling      true
12/16/2003    97    98.94      cooling      false
12/17/2003    96    98.88      cooling      false
12/18/2003    95    97.85      cooling      false
12/19/2003    96    97.85      cooling      false
12/22/2003    97    97.85      cooling      false
12/23/2003    98    97.85      warming      true
12/24/2003    99    97.85      warming      false
12/26/2003   100    97.85      warming      false
12/29/2003   101    97.97      warming      false

假设:

percent_monitor = .03
warming_factor = 1 - percent_monitor
cooling_factor = 1 + percent_monitor

在电子表格中,我将第一行中的列设置为:

monitor = temp * warming_factor
trending = warming
change_in_trend = false

所有剩余行均基于当前行和上一行的列值得出。

监控列逻辑:

if temp > prev_monitor:
    if temp > prev_temp:
        if temp * warming_factor > prev_monitor:
            monitor = temp*warming_factor
        else:
            monitor = prev_monitor
    else:
        monitor = prev_monitor
else:
    if temp < prev_monitor:
        if temp * cooling_factor < prev_monitor:
            monitor = temp * cooling_factor
        else:
            monitor = prev_monitor
    else:
        monitor = prev_monitor

趋势列逻辑:

if temp > prev_monitor:
    trending = warming
else:
    trending = cooling

趋势列逻辑中的更改:

if current_trend - previous_trend:
    change_in_trend = false
else:
    change in trend = true

我能够遍历数据框并毫无问题地应用逻辑。但是,数千行的性能令人震惊。

我一直在尝试以类似“熊猫”的方式进行此操作,但每次尝试都失败了。

通过粘贴我的代码尝试而不会尴尬,有没有人可以为我提供帮助?

谢谢!

1 个答案:

答案 0 :(得分:1)

由于您只是想将其移至Python上,而没有特别设置Pandas,因此我选择了非熊猫方法。我使用了示例行,并在47124秒内完成了0.182行。

对于某些用例,Pandas确实非常好且直观,但迭代速度可能非常慢。 This page解释了Pandas的一些较慢的用法,其中之一主要是索引迭代。一个熊猫眼的方法是利用5. Vectorization with NumPy arrays的优势,但是您的用例似乎足够简单,以至于可能过度使用它,也不值得(假设您的名字是PythonNoob)。

为了清晰和快速起见,简单使用更基本的python函数可以让您获得所需的速度。

首先,我设置常量

percent_monitor = .03
warming_factor = 1 - percent_monitor
cooling_factor = 1 + percent_monitor

然后(为了易于使用,有更简洁的方法可以做到这一点,但这很清楚),我设置了与列值相对应的列名:

DATE = 0
TEMP = 1
MONITOR = 2
TRENDING = 3
CHANGE_IN_TREND = 4

然后,我以自己的功能提取了您的监视器代码(并稍微清理了if语句:

def calculate_monitor(prev_monitor, current_temp, prev_temp):
     if (current_temp > prev_monitor) and (current_temp > prev_temp) and (current_temp * warming_factor) > prev_monitor:
            return current_temp * warming_factor
        elif (current_temp < prev_monitor) and ((current_temp * cooling_factor) < prev_monitor):
            return current_temp * cooling_factor
        else:
            return prev_monitor

最后,我读入代码并对其进行处理:

data = [] # I am going to append everything to this
with open('weather_data.csv') as csv_file:
    previous_row = None
    csv_reader = csv.reader(csv_file, delimiter=' ')
    line_count = 0
    for row in csv_reader:
        cleaned_row = list(filter(None, row))
        if line_count == 0:
            # first row is column -- I am leaving it blank you can do whatever you want with it
            line_count += 1
        elif line_count == 1: # this is the first line
            previous_row = cleaned_row + [float(cleaned_row[TEMP]) * warming_factor, "warming", False]
            data.append(previous_row)
            line_count += 1
        else:
            monitor = calculate_monitor(float(previous_row[MONITOR]), float(cleaned_row[TEMP]), float(previous_row[TEMP]))
            current_trend = 'warming' if float(cleaned_row[TEMP]) > float(previous_row[MONITOR]) else 'cooling'
            change_in_trend = False if current_trend != previous_row[CHANGE_IN_TREND] else True
            previous_row = cleaned_row + [monitor, current_trend, change_in_trend]
            data.append(previous_row)
            line_count += 1

这将为您提供所需的速度。如果要在最后将其转换为熊猫数据框,则可以执行以下操作:

df = pd.DataFrame(data, columns=['date', 'temp', 'monitor', 'current_trend', 'change_in_trend'])