我需要一个Python迭代器来生成Y标记的存储桶中X标记的球的所有组合,其中X大于或等于Y,并且所有存储桶都包含一个或多个球。
对于X = 4和Y = 3的情况,如果球标记为A-B-C-D,而铲斗标记为1-2-3,则某些可能的组合为:
时段1:A,B
时段2:C
时段3:D
时段1:A
时段2:C,B
时段3:D
时段1:A
时段2:C
时段3:D,B
时段1:A,C
时段2:B
时段3:D
...
答案 0 :(得分:0)
AR对原始问题的评论帮助找到了答案,除了“ X的所有Y分区的所有置换”之外,我需要的是“ X的所有Y分区的所有置换” 。 Knuth algorithm here是“ X的所有Y分区”的Python 2实现。我需要创建它的Python 3实现(通过将所有xrange
与range
交换),然后将该函数包装在一个新的生成器中,该生成器在每次迭代时都应用itertools.permutations
。下面的代码是结果。
def algorithm_u(ns, m):
"""
- Python 3 implementation of
Knuth in the Art of Computer Programming, Volume 4, Fascicle 3B, Algorithm U
- copied from Python 2 implementation of the same at
https://codereview.stackexchange.com/questions/1526/finding-all-k-subset-partitions
- the algorithm returns
all set partitions with a given number of blocks, as a python generator object
e.g.
In [1]: gen = algorithm_u(['A', 'B', 'C'], 2)
In [2]: list(gen)
Out[2]: [[['A', 'B'], ['C']],
[['A'], ['B', 'C']],
[['A', 'C'], ['B']]]
"""
def visit(n, a):
ps = [[] for i in range(m)]
for j in range(n):
ps[a[j + 1]].append(ns[j])
return ps
def f(mu, nu, sigma, n, a):
if mu == 2:
yield visit(n, a)
else:
for v in f(mu - 1, nu - 1, (mu + sigma) % 2, n, a):
yield v
if nu == mu + 1:
a[mu] = mu - 1
yield visit(n, a)
while a[nu] > 0:
a[nu] = a[nu] - 1
yield visit(n, a)
elif nu > mu + 1:
if (mu + sigma) % 2 == 1:
a[nu - 1] = mu - 1
else:
a[mu] = mu - 1
if (a[nu] + sigma) % 2 == 1:
for v in b(mu, nu - 1, 0, n, a):
yield v
else:
for v in f(mu, nu - 1, 0, n, a):
yield v
while a[nu] > 0:
a[nu] = a[nu] - 1
if (a[nu] + sigma) % 2 == 1:
for v in b(mu, nu - 1, 0, n, a):
yield v
else:
for v in f(mu, nu - 1, 0, n, a):
yield v
def b(mu, nu, sigma, n, a):
if nu == mu + 1:
while a[nu] < mu - 1:
yield visit(n, a)
a[nu] = a[nu] + 1
yield visit(n, a)
a[mu] = 0
elif nu > mu + 1:
if (a[nu] + sigma) % 2 == 1:
for v in f(mu, nu - 1, 0, n, a):
yield v
else:
for v in b(mu, nu - 1, 0, n, a):
yield v
while a[nu] < mu - 1:
a[nu] = a[nu] + 1
if (a[nu] + sigma) % 2 == 1:
for v in f(mu, nu - 1, 0, n, a):
yield v
else:
for v in b(mu, nu - 1, 0, n, a):
yield v
if (mu + sigma) % 2 == 1:
a[nu - 1] = 0
else:
a[mu] = 0
if mu == 2:
yield visit(n, a)
else:
for v in b(mu - 1, nu - 1, (mu + sigma) % 2, n, a):
yield v
n = len(ns)
a = [0] * (n + 1)
for j in range(1, m + 1):
a[n - m + j] = j - 1
return f(m, n, 0, n, a)
class algorithm_u_permutations:
"""
generator for all permutations of all set partitions with a given number of blocks
e.g.
In [4]: gen = algorithm_u_permutations(['A', 'B', 'C'], 2)
In [5]: list(gen)
Out[5]:
[(['A', 'B'], ['C']),
(['C'], ['A', 'B']),
(['A'], ['B', 'C']),
(['B', 'C'], ['A']),
(['A', 'C'], ['B']),
(['B'], ['A', 'C'])]
"""
from itertools import permutations
def __init__(self, ns, m):
self.au = algorithm_u(ns, m)
self.perms = self.permutations(next(self.au))
def __next__(self):
try:
return next(self.perms)
except StopIteration:
self.perms = self.permutations(next(self.au))
return next(self.perms)
def __iter__(self):
return self