尝试deal with missing data,我编写了以下模型并运行它。输出如下。为什么对NaN期望值进行训练,而NaN期望值却被loss_0_where_nan
掩盖了(历史表明损失确实被评估为0.0
),但是在权重矩阵中引入了NaN
权重hidden
和max_min_pred
中的哪一个?我首先认为这可能是对单个参数学习和输出值的某种加权,我认为这可能是Adadelta
优化器所特有的。但是对于SGD也是如此。
import keras
from keras.models import Model
from keras.optimizers import Adadelta
from keras.losses import mean_squared_error
from keras.layers import Input, Dense
import tensorflow as tf
import numpy
def loss_0_where_nan(loss_function, msg=""):
def filtered_loss_function(y_true, y_pred):
with_nans = loss_function(y_true, y_pred)
nans = tf.is_nan(with_nans)
filtered = tf.where(nans, tf.zeros_like(with_nans), with_nans)
filtered = tf.Print(filtered,
[y_true, y_pred, nans, with_nans, filtered],
message=msg)
return filtered
return filtered_loss_function
input = Input(shape=(3,))
hidden = Dense(2)(input)
min_pred = Dense(1)(hidden)
max_min_pred = Dense(1)(hidden)
model = Model(inputs=[input],
outputs=[min_pred, max_min_pred])
model.compile(
optimizer=Adadelta(),
loss=[loss_0_where_nan(mean_squared_error, "aux: "),
loss_0_where_nan(mean_squared_error, "main: ")],
loss_weights=[0.2, 1.0])
def random_values(n, missing=False):
for i in range(n):
x = numpy.random.random(size=(2, 3))
_min = numpy.minimum(x[..., 0], x[..., 1])
if missing:
_max_min = numpy.full((len(x), 1), numpy.nan)
else:
_max_min = numpy.maximum(_min, x[..., 2]).reshape((-1, 1))
# print(x, numpy.array(_min).reshape((-1, 1)), numpy.array(_max_min), sep="\n", end="\n\n")
yield x, [numpy.array(_min).reshape((-1, 1)), numpy.array(_max_min)]
model.fit_generator(random_values(2, False),
steps_per_epoch=2,
verbose=False)
print("With missing")
history = model.fit_generator(random_values(1, True),
steps_per_epoch=1,
verbose=False)
print("Normal")
model.fit_generator(random_values(2, False),
steps_per_epoch=2,
verbose=False)
print(history.history)
输出:
main: [[0.29131493][0.769406676]][[-1.38235903][-3.32388687]][0 0][2.80118465 16.7550526][2.80118465 16.7550526]
aux: [[0.0422333851][0.0949674547]][[1.01466811][0.648737907]][0 0][0.945629239 0.306661695][0.945629239 0.306661695]
main: [[0.451149166][0.671600938]][[-2.46504498][-2.74316335]][0 0][8.50418854 11.6606159][8.50418854 11.6606159]
aux: [[0.451149166][0.355992794]][[0.893445313][0.917516708]][0 0][0.195625886 0.315309107][0.195625886 0.315309107]
With missing
aux: [[0.406784][0.44401589]][[0.852455556][1.23527527]][0 0][0.198623136 0.62609148][0.198623136 0.62609148]
main: [[nan][nan]][[-3.2140317][-2.22139478]][1 1][nan nan][0 0]
Normal
aux: [[0.490041673][0.00489727268]][[nan][nan]][1 1][nan nan][0 0]
main: [[0.867286][0.949406743]][[nan][nan]][1 1][nan nan][0 0]
aux: [[0.630184174][0.391073674]][[nan][nan]][1 1][nan nan][0 0]
main: [[0.630184174][0.391073674]][[nan][nan]][1 1][nan nan][0 0]
{'loss': [0.08247146010398865], 'dense_1_loss': [0.41235730051994324], 'dense_2_loss': [0.0]}
答案 0 :(得分:1)
似乎与tf.where()
的{{3}}类似。
当y_true
为nan
时,filtered = tf.where(nans, tf.zeros_like(with_nans), with_nans)
的斜率的计算类似于d/dw (filtered) = 1 * d/dw (tf.zeros_like) + 0 * d/dw (with_nans)
。由于在这种情况下,d/dw (with_nans)
是nan
,所以最终的梯度是1 * 0 + 0 * nan = nan
。
为避免此问题,您可以将nan
设置为0
,而不是将y_true
的损失值设置为y_pred
,以便每次{{ 1}}是y_true
。
nan
由于def filtered_loss_function(y_true, y_pred):
nans = tf.is_nan(y_true)
masked_y_true = tf.where(nans, y_pred, y_true)
filtered = loss_function(masked_y_true, y_pred)
return filtered
不再取决于filtered
的值(在进入损失函数之前这些值被屏蔽了),因此渐变将没有nan
s。
nan