这是我第一次认真地使用并行计算。
我在python中使用multiprocessing
模块,并且遇到了这个问题:
队列使用者与队列生产者在不同的进程中运行,前者应等待后者完成其工作,然后再停止遍历队列。有时,消费者比生产者快,而队列却空着。 如果我不提出任何条件,程序将不会停止。
在示例代码中,我使用通配符PRODUCER_IS_OVER
来说明我需要的示例。
以下代码概述了问题:
def save_data(save_que, file_):
### Coroutine instantiation
PRODUCER_IS_OVER = False
empty = False
### Queue consumer
while not(empty and PRODUCER_IS_OVER):
try:
data = save_que.get()
print("saving data",data)
except:
empty = save_que.empty()
print(empty)
pass
#PRODUCER_IS_OVER = get_condition()
print ("All data saved")
return
def get_condition():
###NameError: global name 'PRODUCER_IS_OVER' is not defined
if PRODUCER_IS_OVER:
return True
else:
return False
def produce_data(save_que):
for _ in range(5):
time.sleep(random.randint(1,5))
data = random.randint(1,10)
print("sending data", data)
save_que.put(data)
### Main function here
import random
import time
from multiprocessing import Queue, Manager, Process
manager = Manager()
save_que = manager.Queue()
file_ = "file"
save_p = Process(target= save_data, args=(save_que, file_))
save_p.start()
PRODUCER_IS_OVER = False
produce_data(save_que)
PRODUCER_IS_OVER = True
save_p.join()
produce_data
需要花费可变的时间,我希望save_p进程在填充队列之前开始,以便在填充队列时消耗队列。
我认为有一种解决方法可以在何时停止迭代进行通信,但是我想知道是否存在执行此迭代的正确方法。
我尝试了multiprocessing.Pipe和.Lock,但是我不知道如何正确有效地实现。
已解决:这是最好的方法吗?
下面的代码在Q中实现STOPMESSAGE,效果很好,如果该语言仅支持静态类型,我可以使用类QMsg
对其进行优化。
def save_data(save_que, file_):
# Coroutine instantiation
PRODUCER_IS_OVER = False
empty = False
# Queue consumer
while not(empty and PRODUCER_IS_OVER):
data = save_que.get()
empty = save_que.empty()
print("saving data", data)
if data == "STOP":
PRODUCER_IS_OVER = True
print("All data saved")
return
def get_condition():
# NameError: global name 'PRODUCER_IS_OVER' is not defined
if PRODUCER_IS_OVER:
return True
else:
return False
def produce_data(save_que):
for _ in range(5):
time.sleep(random.randint(1, 5))
data = random.randint(1, 10)
print("sending data", data)
save_que.put(data)
save_que.put("STOP")
# Main function here
import random
import time
from multiprocessing import Queue, Manager, Process
manager = Manager()
save_que = manager.Queue()
file_ = "file"
save_p = Process(target=save_data, args=(save_que, file_))
save_p.start()
PRODUCER_IS_OVER = False
produce_data(save_que)
PRODUCER_IS_OVER = True
save_p.join()
但是,如果队列是由几个独立的进程产生的,那么这将不起作用:在这种情况下,谁将发送ALT消息?
另一种解决方案是将进程索引存储在列表中并执行:
def some_alive():
for p in processes:
if p.is_alive():
return True
return False
但是multiprocessing
仅在父进程中支持.is_alive
方法,这对我来说是有限制的。
谢谢
答案 0 :(得分:0)
您要的是queue.get
的默认行为。它将等待(阻止),直到队列中有可用的项目为止。发送哨兵值确实是结束子进程的首选方式。
您的情况可以简化为这样的情况:
import random
import time
from multiprocessing import Manager, Process
def save_data(save_que, file_):
for data in iter(save_que.get, 'STOP'):
print("saving data", data)
print("All data saved")
return
def produce_data(save_que):
for _ in range(5):
time.sleep(random.randint(1, 5))
data = random.randint(1, 10)
print("sending data", data)
save_que.put(data)
save_que.put("STOP")
if __name__ == '__main__':
manager = Manager()
save_que = manager.Queue()
file_ = "file"
save_p = Process(target=save_data, args=(save_que, file_))
save_p.start()
produce_data(save_que)
save_p.join()
编辑以回答评论中的问题:
如果线索被多个不同的代理访问并且每个代理都有一个随机的时间来完成其任务,那么我应该如何实现停止消息?
没什么大不一样,您必须将尽可能多的消费者放置在队列中,以使哨兵值尽可能多。
一个实用程序函数,它返回流记录器以查看操作的位置:
def get_stream_logger(level=logging.DEBUG):
"""Return logger with configured StreamHandler."""
stream_logger = logging.getLogger('stream_logger')
stream_logger.handlers = []
stream_logger.setLevel(level)
sh = logging.StreamHandler()
sh.setLevel(level)
fmt = '[%(asctime)s %(levelname)-8s %(processName)s] --- %(message)s'
formatter = logging.Formatter(fmt)
sh.setFormatter(formatter)
stream_logger.addHandler(sh)
return stream_logger
具有多个使用者的代码:
import random
import time
from multiprocessing import Manager, Process
import logging
def save_data(save_que, file_):
stream_logger = get_stream_logger()
for data in iter(save_que.get, 'STOP'):
time.sleep(random.randint(1, 5)) # random delay
stream_logger.debug(f"saving: {data}") # DEBUG
stream_logger.debug("all data saved") # DEBUG
return
def produce_data(save_que, n_workers):
stream_logger = get_stream_logger()
for _ in range(5):
time.sleep(random.randint(1, 5))
data = random.randint(1, 10)
stream_logger.debug(f"producing: {data}") # DEBUG
save_que.put(data)
for _ in range(n_workers):
save_que.put("STOP")
if __name__ == '__main__':
file_ = "file"
n_processes = 2
manager = Manager()
save_que = manager.Queue()
processes = []
for _ in range(n_processes):
processes.append(Process(target=save_data, args=(save_que, file_)))
for p in processes:
p.start()
produce_data(save_que, n_workers=n_processes)
for p in processes:
p.join()
示例输出:
[2018-09-02 20:10:35,885 DEBUG MainProcess] --- producing: 2
[2018-09-02 20:10:38,887 DEBUG MainProcess] --- producing: 8
[2018-09-02 20:10:38,887 DEBUG Process-2] --- saving: 2
[2018-09-02 20:10:39,889 DEBUG MainProcess] --- producing: 8
[2018-09-02 20:10:40,889 DEBUG Process-3] --- saving: 8
[2018-09-02 20:10:40,890 DEBUG Process-2] --- saving: 8
[2018-09-02 20:10:42,890 DEBUG MainProcess] --- producing: 1
[2018-09-02 20:10:43,891 DEBUG Process-3] --- saving: 1
[2018-09-02 20:10:46,893 DEBUG MainProcess] --- producing: 5
[2018-09-02 20:10:46,894 DEBUG Process-3] --- all data saved
[2018-09-02 20:10:50,895 DEBUG Process-2] --- saving: 5
[2018-09-02 20:10:50,896 DEBUG Process-2] --- all data saved
Process finished with exit code 0