等待队列填充python多处理的最佳方法

时间:2018-08-30 10:09:34

标签: python parallel-processing queue multiprocessing

这是我第一次认真地使用并行计算。 我在python中使用multiprocessing模块,并且遇到了这个问题:

队列使用者与队列生产者在不同的进程中运行,前者应等待后者完成其工作,然后再停止遍历队列。有时,消费者比生产者快,而队列却空着。 如果我不提出任何条件,程序将不会停止。

在示例代码中,我使用通配符PRODUCER_IS_OVER来说明我需要的示例。

以下代码概述了问题:

def save_data(save_que, file_):
    ### Coroutine instantiation
    PRODUCER_IS_OVER = False
    empty = False
    ### Queue consumer
    while not(empty and PRODUCER_IS_OVER):
        try:
            data = save_que.get()
            print("saving data",data)
        except:
            empty = save_que.empty()
            print(empty)
            pass
        #PRODUCER_IS_OVER = get_condition()
    print ("All data saved")
    return

def get_condition():
    ###NameError: global name 'PRODUCER_IS_OVER' is not defined
    if PRODUCER_IS_OVER:
        return True
    else:
        return False


def produce_data(save_que):
    for _ in range(5):
        time.sleep(random.randint(1,5))
        data = random.randint(1,10)
        print("sending data", data)
        save_que.put(data)

### Main function here
import random
import time
from multiprocessing import Queue, Manager, Process
manager = Manager()
save_que = manager.Queue()
file_ = "file"
save_p    = Process(target= save_data, args=(save_que, file_))
save_p.start()
PRODUCER_IS_OVER = False
produce_data(save_que)
PRODUCER_IS_OVER = True
save_p.join()

produce_data需要花费可变的时间,我希望save_p进程在填充队列之前开始,以便在填充队列时消耗队列。 我认为有一种解决方法可以在何时停止迭代进行通信,但是我想知道是否存在执行此迭代的正确方法。 我尝试了multiprocessing.Pipe和.Lock,但是我不知道如何正确有效地实现。

已解决:这是最好的方法吗?

下面的代码在Q中实现STOPMESSAGE,效果很好,如果该语言仅支持静态类型,我可以使用类QMsg对其进行优化。

def save_data(save_que, file_):
    # Coroutine instantiation
    PRODUCER_IS_OVER = False
    empty = False
    # Queue consumer
    while not(empty and PRODUCER_IS_OVER):
        data = save_que.get()
        empty = save_que.empty()
        print("saving data", data)
        if data == "STOP":
            PRODUCER_IS_OVER = True
    print("All data saved")
    return


def get_condition():
    # NameError: global name 'PRODUCER_IS_OVER' is not defined
    if PRODUCER_IS_OVER:
        return True
    else:
        return False


def produce_data(save_que):
    for _ in range(5):
        time.sleep(random.randint(1, 5))
        data = random.randint(1, 10)
        print("sending data", data)
        save_que.put(data)
    save_que.put("STOP")


# Main function here
import random
import time
from multiprocessing import Queue, Manager, Process
manager = Manager()
save_que = manager.Queue()
file_ = "file"
save_p = Process(target=save_data, args=(save_que, file_))
save_p.start()
PRODUCER_IS_OVER = False
produce_data(save_que)
PRODUCER_IS_OVER = True
save_p.join()

但是,如果队列是由几个独立的进程产生的,那么这将不起作用:在这种情况下,谁将发送ALT消息?

另一种解决方案是将进程索引存储在列表中并执行:

def some_alive():
    for p in processes:
        if p.is_alive():
            return True
    return False

但是multiprocessing仅在父进程中支持.is_alive方法,这对我来说是有限制的。

谢谢

1 个答案:

答案 0 :(得分:0)

您要的是queue.get的默认行为。它将等待(阻止),直到队列中有可用的项目为止。发送哨兵值确实是结束子进程的首选方式。

您的情况可以简化为这样的情况:

import random
import time
from multiprocessing import Manager, Process


def save_data(save_que, file_):
    for data in iter(save_que.get, 'STOP'):
        print("saving data", data)
    print("All data saved")
    return


def produce_data(save_que):
    for _ in range(5):
        time.sleep(random.randint(1, 5))
        data = random.randint(1, 10)
        print("sending data", data)
        save_que.put(data)
    save_que.put("STOP")


if __name__ == '__main__':

    manager = Manager()
    save_que = manager.Queue()
    file_ = "file"
    save_p = Process(target=save_data, args=(save_que, file_))
    save_p.start()
    produce_data(save_que)
    save_p.join()

编辑以回答评论中的问题:

  

如果线索被多个不同的代理访问并且每个代理都有一个随机的时间来完成其任务,那么我应该如何实现停止消息?

没什么大不一样,您必须将尽可能多的消费者放置在队列中,以使哨兵值尽可能多。

一个实用程序函数,它返回流记录器以查看操作的位置:

def get_stream_logger(level=logging.DEBUG):
    """Return logger with configured StreamHandler."""
    stream_logger = logging.getLogger('stream_logger')
    stream_logger.handlers = []
    stream_logger.setLevel(level)
    sh = logging.StreamHandler()
    sh.setLevel(level)
    fmt = '[%(asctime)s %(levelname)-8s %(processName)s] --- %(message)s'
    formatter = logging.Formatter(fmt)
    sh.setFormatter(formatter)
    stream_logger.addHandler(sh)

    return stream_logger

具有多个使用者的代码:

import random
import time
from multiprocessing import Manager, Process
import logging

def save_data(save_que, file_):
    stream_logger = get_stream_logger()
    for data in iter(save_que.get, 'STOP'):
        time.sleep(random.randint(1, 5))  # random delay
        stream_logger.debug(f"saving: {data}")  # DEBUG
    stream_logger.debug("all data saved")  # DEBUG
    return


def produce_data(save_que, n_workers):
    stream_logger = get_stream_logger()
    for _ in range(5):
        time.sleep(random.randint(1, 5))
        data = random.randint(1, 10)
        stream_logger.debug(f"producing: {data}")  # DEBUG
        save_que.put(data)

    for _ in range(n_workers):
        save_que.put("STOP")


if __name__ == '__main__':

    file_ = "file"
    n_processes = 2

    manager = Manager()
    save_que = manager.Queue()

    processes = []
    for _ in range(n_processes):
        processes.append(Process(target=save_data, args=(save_que, file_)))

    for p in processes:
        p.start()

    produce_data(save_que, n_workers=n_processes)

    for p in processes:
        p.join()

示例输出:

[2018-09-02 20:10:35,885 DEBUG    MainProcess] --- producing: 2
[2018-09-02 20:10:38,887 DEBUG    MainProcess] --- producing: 8
[2018-09-02 20:10:38,887 DEBUG    Process-2] --- saving: 2
[2018-09-02 20:10:39,889 DEBUG    MainProcess] --- producing: 8
[2018-09-02 20:10:40,889 DEBUG    Process-3] --- saving: 8
[2018-09-02 20:10:40,890 DEBUG    Process-2] --- saving: 8
[2018-09-02 20:10:42,890 DEBUG    MainProcess] --- producing: 1
[2018-09-02 20:10:43,891 DEBUG    Process-3] --- saving: 1
[2018-09-02 20:10:46,893 DEBUG    MainProcess] --- producing: 5
[2018-09-02 20:10:46,894 DEBUG    Process-3] --- all data saved
[2018-09-02 20:10:50,895 DEBUG    Process-2] --- saving: 5
[2018-09-02 20:10:50,896 DEBUG    Process-2] --- all data saved

Process finished with exit code 0