我对Apache Beam概念还很陌生,并尝试使用以下流程在Google Dataflow上运行作业:
本质上是采用单个数据源,基于字典中的某些值进行过滤,并为每个过滤条件创建单独的输出。
我编写了以下代码:
# List of values to filter by
x_list = [1, 2, 3]
with beam.Pipeline(options=PipelineOptions().from_dictionary(pipeline_params)) as p:
# Read in newline JSON data - each line is a dictionary
log_data = (
p
| "Create " + input_file >> beam.io.textio.ReadFromText(input_file)
| "Load " + input_file >> beam.FlatMap(lambda x: json.loads(x))
)
# For each value in x_list, filter log_data for dictionaries containing the value & write out to separate file
for i in x_list:
# Return dictionary if given key = value in filter
filtered_log = log_data | "Filter_"+i >> beam.Filter(lambda x: x['key'] == i)
# Do additional processing
processed_log = process_pcoll(filtered_log, event)
# Write final file
output = (
processed_log
| 'Dump_json_'+filename >> beam.Map(json.dumps)
| "Save_"+filename >> beam.io.WriteToText(output_fp+filename,num_shards=0,shard_name_template="")
)
当前,它仅处理列表中的第一个值。我知道我可能必须使用ParDo,但是我不确定如何将其纳入我的流程。
感谢任何帮助!
答案 0 :(得分:1)
您可以在Beam中使用TaggedOutput.Write一个Beam函数,该函数将标记pcollection中的每个元素。
classes(item) {
return form.score === item ? ['text-black', 'bg-white'] : ''
}
现在您可以将此输出写入单独的文件/表
# forms.py
from django import forms
from django.utils.translation import gettext_lazy as _
class PermissionModelMultipleChoiceField(forms.ModelMultipleChoiceField):
def label_from_instance(self, obj):
permissions_translated = [_(w).replace('Can', 'Pode').replace('add', 'adicionar').replace('change', 'alterar').replace('delete', 'excluir').replace('view', 'visualizar') for w in (obj.name).split()]
return ' '.join(permissions_translated)
希望有帮助!
来源:[https://beam.apache.org/documentation/sdks/pydoc/2.0.0/_modules/apache_beam/pvalue.html]