通常,在使用Cython时,我能够与Numba媲美。但是,在此示例中,我没有这样做-Numba比我的Cython版本快4倍。
此处是Cython版本:
%%cython -c=-march=native -c=-O3
cimport numpy as np
import numpy as np
cimport cython
@cython.boundscheck(False)
@cython.wraparound(False)
def cy_where(double[::1] df):
cdef int i
cdef int n = len(df)
cdef np.ndarray[dtype=double] output = np.empty(n, dtype=np.float64)
for i in range(n):
if df[i]>0.5:
output[i] = 2.0*df[i]
else:
output[i] = df[i]
return output
这是Numba版本:
import numba as nb
@nb.njit
def nb_where(df):
n = len(df)
output = np.empty(n, dtype=np.float64)
for i in range(n):
if df[i]>0.5:
output[i] = 2.0*df[i]
else:
output[i] = df[i]
return output
经测试,Cython版本与numpy的where
相当,但明显不及Numba:
#Python3.6 + Cython 0.28.3 + gcc-7.2
import numpy
np.random.seed(0)
n = 10000000
data = np.random.random(n)
assert (cy_where(data)==nb_where(data)).all()
assert (np.where(data>0.5,2*data, data)==nb_where(data)).all()
%timeit cy_where(data) # 179ms
%timeit nb_where(data) # 49ms (!!)
%timeit np.where(data>0.5,2*data, data) # 278 ms
Numba性能的原因是什么?使用Cython时如何匹配?
如@ max9111所建议的那样,通过使用连续的内存视图来消除步幅,但这并不能提高性能:
@cython.boundscheck(False)
@cython.wraparound(False)
def cy_where_cont(double[::1] df):
cdef int i
cdef int n = len(df)
cdef np.ndarray[dtype=double] output = np.empty(n, dtype=np.float64)
cdef double[::1] view = output # view as continuous!
for i in range(n):
if df[i]>0.5:
view[i] = 2.0*df[i]
else:
view[i] = df[i]
return output
%timeit cy_where_cont(data) # 165 ms
答案 0 :(得分:2)
这似乎完全取决于LLVM能够进行的优化。如果我用clang编译cython示例,则两个示例之间的性能是相同的。值得一提的是,Windows上的MSVC在性能上与numba相似。
$ CC=clang ipython
<... setup code>
In [7]: %timeit cy_where(data) # 179ms
...: %timeit nb_where(data) # 49ms (!!)
30.8 ms ± 309 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
30.2 ms ± 498 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
答案 1 :(得分:0)
有趣的是,使用clang作为后端,使用pythran编译原始的Numpy代码,其性能与Numba版本相同。
import numpy as np
#pythran export work(float64[])
def work(df):
return np.where(data>0.5,2*data, data)
编译为
CXX=clang++ CC=clang pythran pythran_work.py -O3 -march=native
和基准会议:
import numpy as np
np.random.seed(0)
n = 10000000
data = np.random.random(n)
import numba_work, pythran_work
%timeit numba_work.work(data)
12.7 ms ± 20 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit pythran_work.work(data)
12.7 ms ± 32.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)