我有这样的网络架构:
model = Sequential()
model.add(Embedding(9761, 100, input_length=longest_period))
model.add(LSTM(30, dropout=0.2, recurrent_dropout=0.2))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
当我尝试拟合模型时:
res = model.fit(X_train_lsmt, np.array(y_train_lsmt), validation_split=0.25, epochs=2, batch_size=128, verbose=0)
我收到此错误:
ValueError: Error when checking model input: expected
embedding_3_input to have shape (None, 217) but got array
with shape (3133, 1)
我认为错误可能是关于经过一次热编码的y_train_lsmt
,形状为(3133,3)
[[ 0. 1. 0.]
[ 0. 1. 0.]
[ 0. 0. 1.]
...,
[ 1. 0. 0.]
[ 1. 0. 0.]
[ 0. 1. 0.]]
但是我不确定。
更新:
我已经部分解决了添加Flatten()
层的问题:
model = Sequential()
model.add(Embedding(9761, 100, input_length=stringa_piu_lunga))
model.add(LSTM(units=10, return_sequences=True))
model.add(Flatten())
model.add(Dense(3, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
但是现在我在模型评估期间遇到了相同的错误:
score = model.evaluate(X_test_lsmt, y_train_lsmt, verbose=0)
答案 0 :(得分:1)
您的代码似乎正常。将您的y_train_lstm
更改为分类:
y_train_lstm = keras.utils.to_categorical(y_train_lstm)
或将损失更改为sparse_categorical_entropy:
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
已编辑:根据您的github存储库,该评估无法正常工作,因为您没有预处理x_test_lstm
。试试:
X_test_lstm = sequence.pad_sequences(X_test_lstm, maxlen=longest_string)