我有一个检查点形式的tensorflow预训练模型,我打算通过将模型转换为not null
形式来部署该模型以进行服务。保存的模型的大小太大。 (保存的模型中的“ variables.data-00000-of-0001”文件超过100 MB。)我用谷歌搜索了如何减小变量的大小,但找不到很好的答案。您能帮助我了解如何减少tensorflow保存模型中变量的大小吗?展示一个简单的例子将是很棒的。谢谢!
答案 0 :(得分:0)
我们可以使用以下提到的方法减小Tensorflow模型的大小:
冻结:将SavedModel的检查点文件中存储的变量转换为直接存储在模型图中的常量。这样可以减小模型的整体大小。
修剪:在预测路径和图形输出中剥离未使用的节点,合并重复的节点,以及清除其他节点操作,例如摘要,标识等。
恒定折叠:在模型中查找始终求值为常量表达式的任何子图,然后将其替换为这些常量。 折叠批处理规范:将批量归一化中引入的乘法折叠为上一层的权重乘法。
量化:将权重从浮点转换为较低的精度,例如16或8位。
冻结图形的代码如下:
from tensorflow.python.tools import freeze_graph
output_graph_filename = os.path.join(saved_model_dir, output_filename)
initializer_nodes = ''
freeze_graph.freeze_graph(input_saved_model_dir=saved_model_dir,
output_graph=output_graph_filename,
saved_model_tags = tag_constants.SERVING,
output_node_names=output_node_names,initializer_nodes=initializer_nodes,
input_graph=None, input_saver=False, input_binary=False,
input_checkpoint=None, restore_op_name=None, filename_tensor_name=None,
clear_devices=False, input_meta_graph=False)
修剪和恒定折叠的代码如下:
from tensorflow.tools.graph_transforms import TransformGraph
def get_graph_def_from_file(graph_filepath):
with ops.Graph().as_default():
with tf.gfile.GFile(graph_filepath, 'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
return graph_def
def optimize_graph(model_dir, graph_filename, transforms, output_node):
input_names = []
output_names = [output_node]
if graph_filename is None:
graph_def = get_graph_def_from_saved_model(model_dir)
else:
graph_def = get_graph_def_from_file(os.path.join(model_dir,
graph_filename))
optimized_graph_def = TransformGraph(graph_def, input_names,
output_names, transforms)
tf.train.write_graph(optimized_graph_def, logdir=model_dir, as_text=False,
name='optimized_model.pb')
print('Graph optimized!')
我们通过传递所需的优化列表来调用模型上的代码,如下所示:
transforms = ['remove_nodes(op=Identity)', 'merge_duplicate_nodes',
'strip_unused_nodes','fold_constants(ignore_errors=true)',
'fold_batch_norms']
optimize_graph(saved_model_dir, "frozen_model.pb" , transforms, 'head/predictions/class_ids')
量化代码如下:
transforms = ['quantize_nodes', 'quantize_weights',]
optimize_graph(saved_model_dir, None, transforms, 'head/predictions/class_ids')
应用优化后,我们需要将“优化图”转换回GraphDef。其代码如下所示:
def convert_graph_def_to_saved_model(export_dir, graph_filepath):
if tf.gfile.Exists(export_dir):
tf.gfile.DeleteRecursively(export_dir)
graph_def = get_graph_def_from_file(graph_filepath)
with tf.Session(graph=tf.Graph()) as session:
tf.import_graph_def(graph_def, name='')
tf.saved_model.simple_save(
session,
export_dir,
inputs={
node.name: session.graph.get_tensor_by_name(
'{}:0'.format(node.name))
for node in graph_def.node if node.op=='Placeholder'},
outputs={'class_ids': session.graph.get_tensor_by_name(
'head/predictions/class_ids:0')}
)
print('Optimized graph converted to SavedModel!')
示例代码如下所示:
optimized_export_dir = os.path.join(export_dir, 'optimized')
optimized_filepath = os.path.join(saved_model_dir, 'optimized_model.pb')
convert_graph_def_to_saved_model(optimized_export_dir, optimized_filepath)