为Perl中的Lander创建“自动驾驶仪”

时间:2011-03-04 01:59:08

标签: perl

我正在使用Perl创建一个简单的Lunar Lander游戏。所有元素都可以工作(即图形界面,用户实现的控件等),但我似乎无法使“AutoPilot”功能起作用。此功能应该将着陆器飞到它可以着陆的地点(或指定为着陆目标的地点),然后安全降落在那里。着陆的限制是着陆器着陆的位置和着陆器着陆时的速度。我可以更改的唯一文件是AutoPilot.pm。我将发布允许使用的代码:

package AutoPilot;
use strict;
use warnings;
# use diagnostics;

=head1 Lunar Lander Autopilot

The autopilot is called on every step of the lunar lander simulation.  
It is passed state information as an argument and returns a set of course 
correction commands.

The lander world takes the surface of the moon (a circle!)
and maps it onto a rectangular region. 
On the x-axis, the lander will wrap around when it hits either the
left or right edge of the region.  If the lander goes above the maximum
height of the world, it escapes into the space and thus fails. 
Similarly, if the lander's position goes below 0 without ever landing
on some solid surface, it "sinks" and thus fails again.

The simulation is simple in the respect that if the langer goes at a high speed
it may pass through the terrain boundary.  

The y-axis has normal gravitational physics.

The goal of the autopilot is to land the craft at (or near) the landing
zone without crashing it (or failing by leaving the world).

=head2 Interface in a nutshell

When the simulation is initialized, AutoPilot::Initialize() is called.
Every clock tick, AutoPilot::ComputeLanding() is called by the simulator.
For more explanation, see below.

=cut

# if you want to keep data between invocations of ComputeLanding, put
# the data in this part of the code.  Use Initialize() to handle simulation
# resets.

my  $call_count = 0;
my  $gravity;
my ($x_min, $y_min, $x_max, $y_max);
my ($lander_width, $lander_height, $center_x, $center_y);
my  $target_x; 
my ($thrust, $left_right_thrust); 
my ($max_rotation, $max_left_right_thrusters, $max_main_thruster);
my $ascend_height = 980;

=head1 AutoPilot::Initialize()

This method is called when a new simulation is started.
The following parameters are passed to initialize:

 $gravity, a number, describing the gravity in the world

 $space_boundaries, a reference to an array with 4 numerical
        elements, ($x_min, $y_min, $x_max, $y_max), describing 
        the world boundaries

 $target_x, a number representing the target landing position

 $lander_capabilities, a reference to an array with
   5 elements,

    ($thrust, $left_right_thrust, $max_rotation, $max_left_right_thrusters, $max_main_thruster),

   describing the capabilities of the lander.

 $lander_dimensions, a reference to an array with    
   4 elements,

    ($lander_width, $lander_height, $center_x, $center_y),

   describing the dimensions of the lander.

=head2 Details
=head3 Dimensions
The dimensions are given in 'units' (you can think of 'units' as meters).
The actual numbers can take any real value, not only integers.

=head4 World dimensions

The lander world is a square region with  a lower left corner at 
($x_min,$y_min)  and an upper right corner at ($x_max, $y_max).
The measurement units of these dimensions will just be called units
(think about units as meters). By definition, $x_max>$x_min and
$y_max>$y_min.

The default values for the lower left and upper right corners
are (-800,0), and (800,1600), respectively.

=head4 Lander dimensions 

The lander is $lander_width units wide and $lander_height high.
The coordinates of the lander are always specified with respect to its center.
The center of the lander relative to the lower left corner of the lander bounding box
is given by $center_x, $center_y. Thus, if ($x,$y) are the coordinates of the lander,
($x-$center_x,$y-$center_y) and ($x-$center_x+$lander_width,$y-$center_y+$lander_height)
specify the corners of the bounding box of the lander. (Think of the lander as completely
filling this box.) The significance of the bounding box of the lander is that a collision 
occurs if the bounding box intersects with the terrain or the upper/lower edges of the world.
If a collision occurs, as described earlier, the lander might have just landed,
crashed or 'escaped' (and thus the lander failed).
The constraints on these values are: $lander_width>0, $lander_height>0,
$center_x>0, $center_y>0. 

The default value for the width is 60 units, for the height it is 50,
for $center_x it is 30, for $center_y it is 25. 

=head4 Forces

The gravitational force is:

    $g

The thrust exerted by the engine when fired is:

    $thrust

The thrust exerted by the left/right thrusters when fired is:

    $left_right_thrust    

=head4 Limits to the controls

Within a single timestep there are limits to how many degrees the 
lander may rotate in a timestep, and how many times the side thrusters, 
and main thruster, can fire. These are stored in:

    $max_rotation, $max_left_right_thrusters, $max_main_thruster

=head4 Target

The target landing zone that the lander is supposed to land at:

    $target_x

which returns

    the string "any" if any safe landing site will do, or

    a number giving the x-coordinate of the desired landing site.
    Note: there is no guarantee that this is actually a safe spot to land!

For more details about how the lander is controlled, see AutoPilot::ComputeLanding.

=cut

sub Initialize {
    my ($space_boundaries, $lander_capabilities,$lander_dimensions);
    ($gravity,  $space_boundaries, $target_x, $lander_capabilities, $lander_dimensions) = @_;
    ($x_min, $y_min, $x_max, $y_max) = @{$space_boundaries};
    ( $thrust, $left_right_thrust, $max_rotation,
      $max_left_right_thrusters, $max_main_thruster) = @{$lander_capabilities};
    ($lander_width, $lander_height, $center_x, $center_y) = @{$lander_dimensions};

    $call_count = 0;
}

=head1 AutoPilot::ComputeLanding()

This method is called for every clock tick of the simulation.
It is passed the necessary information about the current state
and it must return an array with elements, describing the
actions that the lander should execute in the current tick.

The parameters passed to the method describe the actual state
 of the lander, the current terrain below the lander and some
 extra information. In particular, the parameters are:

  $fuel, a nonnegative integer describing the remaining amount of fuel.
        When the fuel runs out, the lander becomes uncontrolled.

  $terrain_info, an array describing the terrain below the lander (see below).

  $lander_state, an array which contains information about the lander's state.
        For more information, see below.

  $debug, an integer encoding whether the autopilot should output any debug information.
        Effectively, the value supplied on the command line after "-D",
        or if this value is not supplied, the value of the variable $autopilot_debug
        in the main program. 

  $time, the time elapsed from the beginning of the simulation.
        If the simulation is reset, time is also reset to 0.

=head2 Details of the parameters

=head3 The terrain information

The array referred to by $terrain_info is either empty, or
it describes the terrain element which is just (vertically) below the lander.
It is empty, when there is no terrain element below the lander.
When it is non-empty, it has the following elements:

 ($x0, $y0, $x1, $y1, $slope, $crashSpeed, $crashSlope)

where

    ($x0, $y0)  is the left coordinate of the terrain segment,
    ($x1, $y1)  is the right coordinate of the terrain segment,
    $slope      is the left to right slope of the segment (rise/run),
    $crashSpeed is the maximum landing speed to avoid a crash,
    $crashSlope is the maximum ground slope to avoid a crash.

=head3 The state of the lander

The array referred to by $lander_state contains
 the current position, attitude, and velocity of the lander:

 ($px, $py, $attitude, $vx, $vy, $speed)

where

    $px is its x position in the world, in the range [-800, 800],
    $py is its y position in the world, in the range [0, 1600],
    $attitude is its current attitude angle in unit degrees, 
    from y axis, where
        0 is vertical,
        > 0 is to the left (counter clockwise),
        < 0 is to the right (clockwise),
    $vx is the x velocity in m/s  (< 0 is to left, > 0 is to right),
    $vy is the y velocity in m/s  (< 0 is down, > 0 is up),
    $speed is the speed in m/s, where $speed == sqrt($vx*$vx + $vy*$vy)

=head2 The array to be returned

To control the lander you must return an array with 3 values:

 ($rotation, $left_right_thruster, $main_thruster)

$rotation instructs the lander to rotate the given number of degrees. 
A value of 5 will cause the lander to rotate 5 degrees counter clockwise, 
-5 will rotate 5 degrees clockwise.

$left_right_thruster instructs the lander to fire either the left or 
right thruster. Negative value fire the right thruster, pushing the 
lander to the left, positive fire the left thruster, pushing to the right. 
The absolute value of the value given is the number of pushes, 
so a value of -5 will fire the right thruster 5 times.

$main_thruster instructs the lander to fire the main engine, 
a value of 5 will fire the main engine 5 times.

Each firing of either the main engine or a side engine consumes 
one unit of fuel.
When the fuel runs out, the lander becomes uncontrolled.

Note that your instructions will only be executed up until the 
limits denoted in $max_rotation, $max_side_thrusters, and $max_main_thruster. 
If you return a value larger than one of these maximums than the 
lander will only execute the value of the maximum.

=cut


sub ComputeLanding {
    my ($fuel, $terrain_info, $lander_state, $debug, $time)  = @_;

    my $rotation = 0;
    my $left_right_thruster = 0;
    my $main_thruster = 0;
    # fetch and update historical information
    $call_count++;

    if ( ! $terrain_info ) {
        # hmm, we are not above any terrain!  So do nothing.
        return;
    }

    my ($x0, $y0, $x1, $y1, $slope, $crashSpeed, $crashSlope) =
        @{$terrain_info};

    my ($px, $py, $attitude, $vx, $vy, $speed) =
        @{$lander_state};

    if ( $debug ) {
        printf "%5d ", $call_count;
        printf "%5s ", $target_x;
        printf "%4d, (%6.1f, %6.1f), %4d, ",
            $fuel, $px, $py, $attitude;
        printf "(%5.2f, %5.2f), %5.2f, ",
            $vx, $vy, $speed;
        printf "(%d %d %d %d, %5.2f), %5.2f, %5.2f\n",
          $x0, $y0, $x1, $y1, $slope, $crashSpeed, $crashSlope;
    }

    # reduce horizontal velocity
    if ( $vx < -1 && $attitude > -90 ) {
        # going to the left, rotate clockwise, but not past -90!
        $rotation = -1;
    } 
    elsif ( 1 < $vx && $attitude < 90 ) {
        # going to the right, rotate counterclockwise, but not past 90
        $rotation = +1;
    } 
    else {
        # we're stable horizontally so make sure we are vertical
        $rotation = -$attitude;
    }

    # reduce vertical velocity


    if ($target_x eq "any"){
    if (abs($slope) < $crashSlope){
        if ($vy < -$crashSpeed + 6){
        $main_thruster = 1;
        if (int($vx) < 1 && int ($vx) > -1){
            $left_right_thruster = 0;
        }
        if (int($vx) < -1){
            $left_right_thruster = 1;
        }
        if (int($vx) > 1){
            $left_right_thruster = -1;
        }
        }
    }
     else{
        if ( $py < $ascend_height) {
        if ($vy < 5){
        $main_thruster=2;
        }
        }   
        if ($py > $ascend_height){
        $left_right_thruster = 1;
        if ($vx > 18){
            $left_right_thruster = 0;
        }
        }
    }
    }

    if ($target_x ne "any"){

    if ($target_x < $px + 5 && $target_x > $px - 5){
        print "I made it here";
        if (abs($slope) < $crashSlope){
        if ($vy < -$crashSpeed + 1){
        $main_thruster = 1;
        if (int($vx) < 1 && int ($vx) > -1){
            $left_right_thruster = 0;
        }
        if (int($vx) < -1){
            $left_right_thruster = 1;
        }
        if (int($vx) > 1){
            $left_right_thruster = -1;
        }
        }
    }

    }
    if ($target_x != $px){
        if ( $py < $ascend_height) {
            if ($vy < 5){
            $main_thruster=2;
            }
        }
        if ($py > $ascend_height){
        $left_right_thruster = 1;
        if ($vx > 10){
            $left_right_thruster = 0;
        }
        }
    }

    }

    return ($rotation, $left_right_thruster, $main_thruster);
}

1; # package ends

很抱歉代码的长度......

所以,我想要这个自动驾驶程序做一些事情。他们是:

  1. 稳定着陆器(如果它们非零,则将姿态和水平漂移降低到零)。一旦稳定下来:
  2. 如果高于目标并且目标的区段可以安全着陆,那么它就会下降。
  3. 否则上升到安全高度,超过1200个单位。你可以放心地假设在这个高度或更高的高度没有物体,并且在从初始位置直线上升时,着陆器不会碰到任何东西。
  4. 一旦处于安全高度,如果给出目标,着陆器可以开始水平朝向其目标,否则它应该通过在一个方向上扫描地形来确定可以感知的第一个安全着陆点。重要的是着陆器在水平移动时保持其高度,因为它无法感知到它旁边的物体,并且可能存在低于此高度的物体。
  5. 一旦达到目标x坐标并且发现可以安全着陆,就开始下降。
  6. 如果达到了目标x坐标,但是地形不安全,如果在朝向目标移动时看到了一个好位置,请返回它,否则继续寻找一个好位置。
  7. 一旦看到一个好位置,就好好安全地着陆。
  8. 好的,我已经更新了代码。我的代码现在能够在所有测试中着陆着陆器(除了一个,厌倦了,代码工作得足够接近),没有目标。但是,我正在寻找如何让着陆器降落在目标上的巨大麻烦。到目前为止我的代码有什么想法? (实际使用的代码可在ComputeLanding子例程中找到)

2 个答案:

答案 0 :(得分:2)

这是一个提示:尝试从另一端接近问题。

  • 随着时间的推移,着陆几乎相当于起飞。唯一不能扭转的是燃料消耗。 (这是否重要取决于模拟是否将燃料计算为着陆器质量的一部分。在真实的模拟中,它应该,但一目了然,看起来你的可能不是。)
  • 在火箭中起飞的最佳方式(就燃油效率而言)是以最大功率发动引擎,直到你足够快,然后关闭它们。你爬得越慢,你就越浪费你的燃料。

因此,降落火箭的最佳方法是自由降落(在可能的初始燃烧之后纠正航向),直到最后一个可能的瞬间,然后以全功率启动发动机,以便在停靠点上方停下来垫(或以你认为可接受的速度击打垫,如果它大于零)。

你能算出开启引擎的合适时机吗? (即使你不能直接做到这一点,你总是可以通过二分搜索来近似它。只需选择一个点并模拟发生的事情:如果你崩溃,先开始燃烧;如果你在撞击表面之前停止,请稍后再开始。 )

(Ps。对于 Perl 编程课程来说,这似乎是一个相当愚蠢的练习。是的,你当然可以在Perl中解决这个问题,但Perl没有什么特别适合这个练习的。确实,这根本不是一个编程问题,而是一个数学问题 - 它唯一的编程方面是将数学解决方案一旦发现就转化为工作程序。)

答案 1 :(得分:0)

您可以使用遗传算法进行着陆器实现,请查看本书AI Techniques for game programming。它正是您需要的代码示例。但是,这些例子都是用c ++编写的。