我想分析近300个pdf文档中的文本。现在,我使用了pdftools
和tm
,tidytext
包来读取文本,将其覆盖为语料库,然后覆盖为文档术语矩阵,最后我想将其结构化为整洁的数据框。
我有几个问题:
document
列中的值,而不是索引编号。corpus
对象中有294个文档,但是当我整理它时,我似乎会丢失一些文件,因为converted %>% distinct(document)
会返回275。我不知道为什么会这样。我有以下可重现的脚本:
library(tidyverse)
library(tidytext)
library(pdftools)
library(tm)
library(broom)
# Create a temporary empty directory
# (don't worry at the end of this script I'll remove this directory and its files)
dir.create("~/Desktop/sample-pdfs")
# Fill directory with 2 pdf files from my github repo
download.file("https://github.com/thomasdebeus/colourful-facts/raw/master/projects/sample-data/'s-Gravenhage_coalitieakkoord.pdf", destfile = "~/Desktop/sample-pdfs/'s-Gravenhage_coalitieakkoord.pdf")
download.file("https://github.com/thomasdebeus/colourful-facts/raw/master/projects/sample-data/Aa%20en%20Hunze_coalitieakkoord.pdf", destfile = "~/Desktop/sample-pdfs/Aa en Hunze_coalitieakkoord.pdf")
# Create vector of file paths
dir <- "~/Desktop/sample-pdfs"
pdfs <- paste(dir, "/", list.files(dir, pattern = "*.pdf"), sep = "")
# Read the text from pdf's with pdftools package
pdfs_text <- map(pdfs, pdf_text)
# Convert to document-term-matrix
converted <- Corpus(VectorSource(pdfs_text)) %>%
DocumentTermMatrix()
# Now I want to convert this to a tidy format
converted %>%
tidy() %>%
filter(!grepl("[0-9]+", term))
具有以下输出:
# A tibble: 5,305 x 3
document term count
<chr> <chr> <dbl>
1 1 aan 158
2 1 aanbesteding 2
3 1 aanbestedingen 1
4 1 aanbevelingen 1
5 1 aanbieden 3
6 1 aanbieders 1
7 1 aanbod 8
8 1 aandacht 16
9 1 aandachtspunt 3
10 1 aandeel 1
# ... with 5,295 more rows
这似乎很好,但是我希望将文件名("'s-Gravenhage"
和"Aa en Hunze"
)作为文档列中的值而不是索引编号。我该怎么做?
所需的输出:
# A tibble: 5,305 x 3
document term count
<chr> <chr> <dbl>
1 's-Gravenhage aan 158
2 's-Gravenhage aanbesteding 2
3 's-Gravenhage aanbestedingen 1
4 's-Gravenhage aanbevelingen 1
5 's-Gravenhage aanbieden 3
6 's-Gravenhage aanbieders 1
7 's-Gravenhage aanbod 8
8 's-Gravenhage aandacht 16
9 's-Gravenhage aandachtspunt 3
10 's-Gravenhage aandeel 1
# ... with 5,295 more rows
从运行以下行的桌面删除下载的文件及其目录:
unlink("~/Desktop/sample-pdfs", recursive = TRUE)
非常感谢所有帮助!
答案 0 :(得分:2)
您可以使用tm将文档直接读入语料库。读者readPDF使用pdftools作为引擎。无需先创建一组文本,将其放入语料库即可获得输出。我创建了2个示例。第一个与您所做的一致,但首先要经过语料库。第二个纯粹基于tidyverse + tidytext。无需在tm,tidytext等之间切换。
示例之间令牌数量的差异是由于tidytext / tokenizer中的自动清除。
如果要处理大量文档,您可能希望使用enable_binary_protocol=true
作为工作重点,因为它可以开箱即用地在多个内核上工作,并且可以加快令牌生成器的速度。不要忘记使用quanteda
软件包来获得一份很好的荷兰停用词列表。如果您需要POS标记荷兰语单词,请检查stopwords
软件包。
updipe
只使用tidytext而不是tm
library(tidyverse)
library(tidytext)
library(tm)
directory <- "D:/sample-pdfs"
# create corpus from pdfs
converted <- VCorpus(DirSource(directory), readerControl = list(reader = readPDF)) %>%
DocumentTermMatrix()
converted %>%
tidy() %>%
filter(!grepl("[0-9]+", term))
# A tibble: 5,707 x 3
document term count
<chr> <chr> <dbl>
1 's-Gravenhage_coalitieakkoord.pdf "\ade" 4
2 's-Gravenhage_coalitieakkoord.pdf "\adeze" 1
3 's-Gravenhage_coalitieakkoord.pdf "\aeen" 2
4 's-Gravenhage_coalitieakkoord.pdf "\aer" 2
5 's-Gravenhage_coalitieakkoord.pdf "\aextra" 2
6 's-Gravenhage_coalitieakkoord.pdf "\agroei" 1
7 's-Gravenhage_coalitieakkoord.pdf "\ahet" 1
8 's-Gravenhage_coalitieakkoord.pdf "\amet" 1
9 's-Gravenhage_coalitieakkoord.pdf "\aonderwijs," 1
10 's-Gravenhage_coalitieakkoord.pdf "\aop" 11
# ... with 5,697 more rows
答案 1 :(得分:1)
我建议为要执行的操作编写包装函数,这样就可以将每个文件名添加为一列。
read_PDF <- function(file){
pdfs_text <- pdf_text(file)
converted <- Corpus(VectorSource(pdfs_text)) %>%
DocumentTermMatrix()
converted %>%
tidy() %>%
filter(!grepl("[0-9]+", term)) %>%
# add FileName as a column
mutate(FileName = file)
}
final <- map(pdfs, read_PDF) %>% data.table::rbindlist()
答案 2 :(得分:1)
很好的例子!
代码如下:
library(tidyverse)
library(tidytext)
library(pdftools)
library(tm)
library(broom)
# Create a temporary empty directory
dir <- "PDFs/"
pdfs <- paste0(dir, list.files(dir, pattern = "*.pdf"))
names <- list.files(dir, pattern = "*.pdf")
# create a table of names
namesDocs <-
names %>%
str_remove(pattern = ".pdf") %>%
as.tibble() %>%
mutate(ids = as.character(seq_along(names)))
namesDocs
# Read the text from pdf's with pdftools package
pdfs_text <- map(pdfs, pdftools::pdf_text)
# Convert to document-term-matrix
# add cleaning process
converted <-
Corpus(VectorSource(pdfs_text)) %>%
DocumentTermMatrix(
control = list(removeNumbers = TRUE,
stopwords = TRUE,
removePunctuation = TRUE))
converted
# Now I want to convert this to a tidy format
# add names of documents
mytable <-
converted %>%
tidy() %>%
arrange(desc(count)) %>%
left_join(y = namesDocs, by = c("document" = "ids"))
head(mytable)
View(mytable)
答案 3 :(得分:0)
我认为我在网上找到的最简单的邮件是来自朱利安·布伦Text minning
您需要两个包裹
library("readtext")
library("quanteda")
对于此代码,将您的PDF命名为 Author_date ,然后将其放置在工作目录的文件夹中,例如,我将pdf放置在 PDFs 文件夹
# set path to the PDF
pdf_path <- "PDFs/"
# List the PDFs
pdfs <- list.files(path = pdf_path, pattern = 'pdf$', full.names = TRUE)
# Import the PDFs into R
spill_texts <- readtext(pdfs,
docvarsfrom = "filenames",
sep = "_",
docvarnames = c("First_author", "Year"))
# Transform the pdfs into a corpus object
spill_corpus <- corpus(spill_texts)
spill_corpus
# Some stats about the pdfs
tokenInfo <- summary(spill_corpus)
tokenInfo