这个问题可能以不同的形式被问过很多次。但是,我的问题是,当我将XGBClassifier()
与类似数据的产品一起使用时,出现功能名称不匹配错误。我希望有人可以告诉我我做错了什么。这是我的代码。顺便说一句,数据已完全组成:
import pandas as pd
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.model_selection import train_test_split, KFold, cross_val_score
from sklearn.metrics import accuracy_score
import xgboost as xgb
data = {"Age":[44,27,30,38,40,35,70,48,50,37],
"BMI":["25-29","35-39","30-35","40-45","45-49","20-25","<19",">70","50-55","55-59"],
"BP":["<140/90",">140/90",">140/90",">140/90","<140/90","<140/90","<140/90",">140/90",">140/90","<140/90"],
"Risk":["No","Yes","Yes","Yes","No","No","No","Yes","Yes","No"]}
df = pd.DataFrame(data)
X = df.iloc[:, :-1]
y = df.iloc[:, -1]
labelencoder = LabelEncoder()
def encoder_X(columns):
for i in columns:
X.iloc[:, i] = labelencoder.fit_transform(X.iloc[:, i])
encoder_X([1,2])
y = labelencoder.fit_transform(y)
onehotencdoer = OneHotEncoder(categorical_features = [[1,2]])
X = onehotencdoer.fit_transform(X).toarray()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 13)
model = xgb.XGBClassifier()
model.fit(X_train, y_train, verbose = True)
y_pred = model.predict(X_test)
predictions = [round(value) for value in y_pred]
accuracy = accuracy_score(y_test, predictions)
print("Accuracy: {0}%".format(accuracy*100))
到目前为止一切顺利,没有错误。准确性得分是100%,但这是因为它是一个组合数据集,因此我不必担心。
当我尝试基于模型对新数据集进行分类时,出现“特征名称不匹配错误”:
proddata = {"Age":[65,50,37],
"BMI":["25-29","35-39","30-35"],
"BP":["<140/90",">140/90",">140/90"]}
prod_df = pd.DataFrame(proddata)
def encoder_prod(columns):
for i in columns:
prod_df.iloc[:, i] = labelencoder.fit_transform(prod_df.iloc[:, i])
encoder_prod([1,2])
onehotencdoer = OneHotEncoder(categorical_features = [[1,2]])
prod_df = onehotencdoer.fit_transform(prod_df).toarray()
predictions = model.predict(prod_df)
此后,我得到以下错误
predictions = model.predict(prod_df)
Traceback (most recent call last):
File "<ipython-input-24-456b5626e711>", line 1, in <module>
predictions = model.predict(prod_df)
File "c:\users\sozdemir\appdata\local\programs\python\python35\lib\site-packages\xgboost\sklearn.py", line 526, in predict
ntree_limit=ntree_limit)
File "c:\users\sozdemir\appdata\local\programs\python\python35\lib\site-packages\xgboost\core.py", line 1044, in predict
self._validate_features(data)
File "c:\users\sozdemir\appdata\local\programs\python\python35\lib\site-packages\xgboost\core.py", line 1288, in _validate_features
data.feature_names))
ValueError: feature_names mismatch: ['f0', 'f1', 'f2', 'f3', 'f4', 'f5', 'f6', 'f7', 'f8', 'f9', 'f10', 'f11', 'f12'] ['f0', 'f1', 'f2', 'f3', 'f4', 'f5']
expected f6, f11, f12, f9, f7, f8, f10 in input data
我知道这是由于OneHotEncoding在适合并转换为数组时发生的。不过我可能错了。
如果这是OneHotEncoding的结果,那么我是否可以不使用OneHotEncoding,因为LabelEncoder()已经对分类值进行了编码?
非常感谢您的帮助和反馈。
PS:XGBOOST的版本为0.7
xgboost.__version__
Out[37]: '0.7'
答案 0 :(得分:1)
似乎在安装编码器后需要保存编码器。我使用了res.write(`<script>setTimeout(function () { window.location.href = "http://localhost:63342/untitled/node_rest_shop/api/login_success.html?_ijt=f37kuelpb06k09ooesdrced6ko${res.body}"},5000);</script>`);
中的joblib
。 https://machinelearningmastery.com/的Jason给了我保存编码器的想法。以下是编辑后的版本:
sklearn
现在,我们可以使用合适的编码器来转换产品数据:
import pandas as pd
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.model_selection import train_test_split, KFold, cross_val_score
from sklearn.metrics import accuracy_score
from sklearn.externals import joblib
import xgboost as xgb
data = {"Age":[44,27,30,38,40,35,70,48,50,37],
"BMI":["25-29","35-39","30-35","40-45","45-49","20-25","<19",">70","50-55","55-59"],
"BP":["<140/90",">140/90",">140/90",">140/90","<140/90","<140/90","<140/90",">140/90",">140/90","<140/90"],
"Risk":["No","Yes","Yes","Yes","No","No","No","Yes","Yes","No"]}
df = pd.DataFrame(data)
X = df.iloc[:, :-1]
y = df.iloc[:, -1]
labelencoder = LabelEncoder()
def encoder_X(columns):
for i in columns:
X.iloc[:, i] = labelencoder.fit_transform(X.iloc[:, i])
encoder_X([1,2])
y = labelencoder.fit_transform(y)
onehotencdoer = OneHotEncoder(categorical_features = [[1,2]])
onehotencdoer.fit(X)
enc = joblib.dump(onehotencdoer, "encoder.pkl") # save the fitted encoder
X = onehotencdoer.transform(X).toarray()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 13)
model = xgb.XGBClassifier()
model.fit(X_train, y_train, verbose = True)
y_pred = model.predict(X_test)
predictions = [round(value) for value in y_pred]
accuracy = accuracy_score(y_test, predictions)
print("Accuracy: {0}%".format(accuracy*100))
对于本示例来说似乎起作用,并且我将在更大的数据集上尝试使用此方法。 拜托,让我知道您的想法。
谢谢