我在两列中有数据:它的日期和一个因子变量。我的数据片段:
Date Category
1 2009-06-22 BREAD
2 2009-06-23 BREAD
3 2009-06-23 BREAD
4 2009-06-23 JAM
5 2009-06-23 MILK
6 2009-06-24 BREAD
9 2009-06-24 MILK
10 2009-06-25 JAM
问题:我需要计算每年每个月出现的每种Category
类型有多少种。
I tried approaches like this,使用aggregate
,但我不知道该如何拟合因子变量。
数据示例:这是一个可行的数据示例(具有更多的月份和年份):http://rextester.com/DYMXN47464当然,我的最终(实际)数据是从2009年到2018年,每个月每年,但这些观测值太多了,我无法共享整个数据。
答案 0 :(得分:4)
基于您的数据集。将年份和月份添加到数据中,按年份,月份和类别分组并计算结果。
library(dplyr)
library(lubridate)
data %>% mutate(year = year(Date),
month = month(Date)) %>%
group_by(year, month, Category) %>%
summarise(count = n())
# A tibble: 11 x 4
# Groups: year, month [?]
year month Category count
<dbl> <dbl> <fct> <int>
1 2009 6 MILK 2
2 2009 6 BREAD 6
3 2009 6 JAM 2
4 2010 4 MILK 2
5 2010 4 BREAD 7
6 2010 4 JAM 2
7 2011 12 MILK 4
8 2011 12 BREAD 13
9 2011 12 JAM 1
10 2012 1 MILK 1
11 2012 1 BREAD 2
数据:
data <- structure(list(Date = structure(c(14417, 14418, 14418, 14418,
14418, 14419, 14419, 14419, 14419, 14420, 14725, 14725, 14726,
14726, 14726, 14726, 14727, 14727, 14727, 14727, 14728, 15335,
15335, 15335, 15335, 15336, 15336, 15336, 15336, 15337, 15337,
15337, 15337, 15338, 15338, 15338, 15338, 15339, 15339, 15342,
15342, 15342), class = "Date"), Category = structure(c(2L, 2L,
2L, 3L, 1L, 2L, 2L, 2L, 1L, 3L, 2L, 2L, 2L, 1L, 2L, 2L, 3L, 3L,
1L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 3L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L), .Label = c("MILK", "BREAD",
"JAM", "SALTO DE BANCA"), class = "factor")), row.names = c(1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 1000L, 1001L, 1002L, 1003L,
1004L, 1005L, 1006L, 1007L, 1008L, 1009L, 1010L, 3000L, 3001L,
3002L, 3003L, 3004L, 3005L, 3006L, 3007L, 3008L, 3009L, 3010L,
3011L, 3012L, 3013L, 3014L, 3015L, 3016L, 3017L, 3018L, 3019L,
3020L), class = "data.frame")
答案 1 :(得分:1)
我们还可以将Date
类转换为yearmon
(从zoo
)并获得count
library(zoo)
library(dplyr)
data %>%
count(yearmon = as.yearmon(Date), Category)
# A tibble: 11 x 3
# yearmon Category n
# <S3: yearmon> <fct> <int>
# 1 Jun 2009 MILK 2
# 2 Jun 2009 BREAD 6
# 3 Jun 2009 JAM 2
# 4 Apr 2010 MILK 2
# 5 Apr 2010 BREAD 7
# 6 Apr 2010 JAM 2
# 7 Dec 2011 MILK 4
# 8 Dec 2011 BREAD 13
# 9 Dec 2011 JAM 1
#10 Jan 2012 MILK 1
#11 Jan 2012 BREAD 2
注意:数据来自@phiver的帖子