def adf(ts):
# Determing rolling statistics
rolmean = pd.rolling_mean(ts, window=12)
rolstd = pd.rolling_std(ts, window=12)
#Plot rolling statistics:
orig = plt.plot(ts, color='blue',label='Original')
mean = plt.plot(rolmean, color='red', label='Rolling Mean')
std = plt.plot(rolstd, color='black', label = 'Rolling Std')
plt.legend(loc='best')
plt.title('Rolling Mean & Standard Deviation')
plt.show(block=False)
# Calculate ADF factors
adftest = adfuller(ts, autolag='AIC')
adfoutput = pd.Series(adftest[0:4], index=['Test Statistic','p-value','# of Lags Used',
'Number of Observations Used'])
for key,value in adftest[4].items():
adfoutput['Critical Value (%s)'%key] = value
return adfoutput**
上面我创建了计算MA窗口5的函数。 但是当我运行以下代码时,我得到了错误。.
df['priceModLogMA12'] = pd.rolling_mean(df.priceModLog, window = 5)**
AttributeError: module 'pandas' has no attribute 'rolling_mean'
答案 0 :(得分:2)
我认为我们应该使用
rolmean = ts.rolling(window=12).mean()
代替
rolmean = pd.rolling_mean(ts, window=12)
因为不赞成使用pd.rolling_mean
编辑
只是改变
rolmean = pd.rolling_mean(ts, window=12)
rolstd = pd.rolling_std(ts, window=12)
收件人
rolmean = ts.rolling(window=12).mean()
rolstd = ts.rolling(window=12).std()
编辑
如果您正在谈论这条线,请从以下位置更改
df['priceModLogMA12'] = pd.rolling_mean(df.priceModLog, window = 5)
收件人
df['priceModLogMA12'] = df.priceModLog.rolling(window = 5).mean()
答案 1 :(得分:1)
rolling_mean已在熊猫中删除。相反,您应该使用pandas.DataFrame.rolling,然后应用mean()。看一下here。您可以像这样编辑它:
ts.rolling(window=12).mean()