我正在尝试通过遵循https://medium.com/@erikhallstrm/using-the-tensorflow-lstm-api-3-7-5f2b97ca6b73来学习具有张量流的RNN和LSTM。
我遇到错误,我不知道要纠正它是
ValueError:basic_lstm_cell_23层的输入0与 层:预期ndim = 2,找到ndim = 1。收到的完整图形:[5]
你们能看看这个对我有帮助吗?
我遇到麻烦的线路是
`states_series, current_state = tf.contrib.rnn.static_rnn(cell = cell,inputs = inputs_series,initial_state = init_state)`
下面这行是我的代码。
from __future__ import print_function, division
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
num_epochs = 100
total_series_length = 50000
truncated_backprop_length = 15
state_size = 4
num_classes = 2
echo_step = 3
batch_size = 5
num_batches = total_series_length//batch_size//truncated_backprop_length
def generateData():
x = np.array(np.random.choice(2, total_series_length, p=[0.5, 0.5]))
y = np.roll(x, echo_step)
y[0:echo_step] = 0
x = x.reshape((batch_size, -1)) # The first index changing slowest, subseries as rows
y = y.reshape((batch_size, -1))
return (x, y)
batchX_placeholder = tf.placeholder(tf.float32, [batch_size, truncated_backprop_length])
batchY_placeholder = tf.placeholder(tf.int32, [batch_size, truncated_backprop_length])
cell_state = tf.placeholder(tf.float32, [batch_size, state_size])
hidden_state = tf.placeholder(tf.float32, [batch_size, state_size])
init_state = tf.nn.rnn_cell.LSTMStateTuple(cell_state, hidden_state)
W2 = tf.Variable(np.random.rand(state_size, num_classes),dtype=tf.float32)
b2 = tf.Variable(np.zeros((1,num_classes)), dtype=tf.float32)
# Unpack columns
inputs_series = tf.unstack(batchX_placeholder, axis=1)
labels_series = tf.unstack(batchY_placeholder, axis=1)
# Forward passes
cell = tf.contrib.rnn.BasicLSTMCell(state_size, state_is_tuple=True)
states_series, current_state = tf.contrib.rnn.static_rnn(cell = cell,inputs = inputs_series,initial_state = init_state)
logits_series = [tf.matmul(state, W2) + b2 for state in states_series] #Broadcasted addition
predictions_series = [tf.nn.softmax(logits) for logits in logits_series]
losses = [tf.nn.sparse_softmax_cross_entropy_with_logits(logits, labels) for logits, labels in zip(logits_series,labels_series)]
total_loss = tf.reduce_mean(losses)
train_step = tf.train.AdagradOptimizer(0.3).minimize(total_loss)
def plot(loss_list, predictions_series, batchX, batchY):
plt.subplot(2, 3, 1)
plt.cla()
plt.plot(loss_list)
for batch_series_idx in range(5):
one_hot_output_series = np.array(predictions_series)[:, batch_series_idx, :]
single_output_series = np.array([(1 if out[0] < 0.5 else 0) for out in one_hot_output_series])
plt.subplot(2, 3, batch_series_idx + 2)
plt.cla()
plt.axis([0, truncated_backprop_length, 0, 2])
left_offset = range(truncated_backprop_length)
plt.bar(left_offset, batchX[batch_series_idx, :], width=1, color="blue")
plt.bar(left_offset, batchY[batch_series_idx, :] * 0.5, width=1, color="red")
plt.bar(left_offset, single_output_series * 0.3, width=1, color="green")
plt.draw()
plt.pause(0.0001)
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
plt.ion()
plt.figure()
plt.show()
loss_list = []
for epoch_idx in range(num_epochs):
x,y = generateData()
_current_cell_state = np.zeros((batch_size, state_size))
_current_hidden_state = np.zeros((batch_size, state_size))
print("New data, epoch", epoch_idx)
for batch_idx in range(num_batches):
start_idx = batch_idx * truncated_backprop_length
end_idx = start_idx + truncated_backprop_length
batchX = x[:,start_idx:end_idx]
batchY = y[:,start_idx:end_idx]
_total_loss, _train_step, _current_state, _predictions_series = sess.run(
[total_loss, train_step, current_state, predictions_series],
feed_dict={
batchX_placeholder: batchX,
batchY_placeholder: batchY,
cell_state: _current_cell_state,
hidden_state: _current_hidden_state
})
_current_cell_state, _current_hidden_state = _current_state
loss_list.append(_total_loss)
if batch_idx%100 == 0:
print("Step",batch_idx, "Batch loss", _total_loss)
plot(loss_list, _predictions_series, batchX, batchY)
plt.ioff()
plt.show()
谢谢。
答案 0 :(得分:0)
inputs_series = tf.unstack(batchX_placeholder, axis=1)
拆栈后,input_series的形状为[batch_size],因此只有一个暗角。如果输入尺寸仅为一个尺寸,请使用tf.expand_dim()