ValueError:检查目标时出错:预期density_44的形状为(1,),但数组的形状为(3,)。尽管它们似乎匹配

时间:2018-08-02 14:21:04

标签: python tensorflow keras conv-neural-network linear-regression

我搜索了几个类似的主题,涉及类似的问题。例如thisthisthis等。尽管如此,我仍然没有设法解决我的问题,为什么现在我要问社区。

我最终想要做的是使用CNN,并回归预测三个参数。输入是矩阵(初始大小为(3724、4073、3),可以在我对其进行几步预处理后将其绘制为RGB图像。由于数据集的大小,我正在使用以下生成器分批(截至目前,共16个)提供CNN:

class My_Generator(Sequence):
""" Generates batches of training data and ground truth. Inputs are the image paths and batch size. """

def __init__(self, image_paths, batch_size, normalise=True):
    self.image_paths, self.batch_size = image_paths, batch_size
    self.normalise = normalise

def __len__(self):
    return int(np.ceil(len(self.image_paths) / float(self.batch_size)))

def __getitem__(self, idx):
    batch = self.image_paths[idx * self.batch_size:(idx + 1) * self.batch_size]        
    matrices, parameters = [], []
    for file_path in batch:
        mat, param, name = get_Matrix_and_Parameters(file_path)

        #Transform the matrix from 2D to 3D as a (mat.shape[0], mat.shape[1]) RBG image. Rescale its values to [0,1]
        mat = skimage.transform.resize(mat, (mat.shape[0]//8, mat.shape[1]//8, 3), 
                                       mode='constant', preserve_range=self.normalise) 
        param = MMscale_param(param, name)                                              # Rescale the parameters
        matrices.append(mat)
        parameters.append(param)

    MAT, PAM = np.array(matrices), np.array(parameters)
    PAM = np.reshape(PAM, (PAM.shape[0], PAM.shape[1]))
    print("Shape Matrices: {0}, Shape Parameters: {1}".format(MAT.shape, PAM.shape))
    print("Individual PAM shape: {0}".format(PAM[0,:].shape))

    return MAT, PAM

生成器还将矩阵的大小调整了8倍,因为如果不这样做,则会出现内存错误。函数 MMscale_param 只是将参数重新缩放为[0,1]。

现在生成的批次的形状对于要关注的矩阵具有(16、465、509、3),对于参数的形状具有(16、3)。现在,这些内容被馈入以下CNN体系结构:

_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_1 (Conv2D)            (None, 463, 507, 16)      448       
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 231, 253, 16)      0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 229, 251, 32)      4640      
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 114, 125, 32)      0         
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 112, 123, 64)      18496     
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 56, 61, 64)        0         
_________________________________________________________________
conv2d_4 (Conv2D)            (None, 54, 59, 128)       73856     
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 27, 29, 128)       0         
_________________________________________________________________
conv2d_5 (Conv2D)            (None, 25, 27, 256)       295168    
_________________________________________________________________
max_pooling2d_5 (MaxPooling2 (None, 12, 13, 256)       0         
_________________________________________________________________
flatten_1 (Flatten)          (None, 39936)             0         
_________________________________________________________________
dense_1 (Dense)              (None, 1000)              39937000  
_________________________________________________________________
dense_2 (Dense)              (None, 100)               100100    
_________________________________________________________________
dense_3 (Dense)              (None, 20)                2020      
_________________________________________________________________
dense_4 (Dense)              (None, 3)                 63        
=================================================================
Total params: 40,431,791
Trainable params: 40,431,791
Non-trainable params: 0
_________________________________________________________________

如上所示,模型的最后一层期望输入为(None,3)。如果我理解正确的话,那么“任何”批次大小值可以在此处替换为“无”,因此我的输入(16、3)或(batch_size,number_of_parameters_to_predict)应该是有效的。但是,我仍然收到以下错误消息:

ValueError: Error when checking target: expected dense_4 to have shape (1,) but got array with shape (3,)

我发现很奇怪的是,声称密集层 dense_4 具有形状(1,)。但是,它不是在(3,)形状的上面的架构中显示吗?然后,这应该与输入数组的形状(3,)完全匹配。

我试图以几种方式重塑和/或转置数组,但没有成功。我什至卸载并重新安装了TensorFlow和Keras,以为那里出了点问题,但仍然没有。

有效的方法是尝试仅预测三个参数之一,使输入形状为(1,0)。 (不过,稍后会产生其他与内存相关的错误。)这实际上与我对 dense_4 层的影响方式无关,这意味着(None,1)和(None,3)都可以工作,根据我的知识有限,没有任何意义。

添加编辑;

batch_size = 16
my_training_batch_generator_NIR = My_Generator(training_paths_NIR, batch_size)
my_validation_batch_generator_NIR = My_Generator(validation_paths_NIR, batch_size)

model.compile(loss='sparse_categorical_crossentropy', optimizer='adam')

以及培训代码:

model_path = "/Models/weights.best.hdf5"
num_epochs = 10
checkpointer = ModelCheckpoint(filepath=model_path, 
                           verbose=1, 
                           save_best_only=True)

model.fit_generator(generator=my_training_batch_generator_NIR,
                steps_per_epoch=(len(validation_paths_NIR) // batch_size),
                epochs=num_epochs,
                verbose=1,
                callbacks=[checkpointer],
                validation_data=my_validation_batch_generator_NIR, 
                validation_steps=(len(validation_paths_NIR) // batch_size), 
                use_multiprocessing=True, 
                max_queue_size=1,
                workers=1)

因此,总而言之:我在将(3,)数组拟合到(3,)层中时遇到问题。然而,后者被要求具有形状(1,)。我一定在这里遗漏了一些东西,因为它不可能是bug,对吗?

任何帮助将不胜感激。

我在Ubuntu上使用Keras版本2.2.2和TensorFlow 1.9.0后端。

1 个答案:

答案 0 :(得分:1)

这是因为您正在使用损失函数。替换为

    loss='categorical_crossentropy'

代码应该可以正常工作。