所以我才发现udpipe有一种很棒的显示相关性的方式,所以我开始研究它。如果this site中的代码在导入后在csv文件上使用并且不对其进行任何更改,则可以完美地工作。
但是,一旦创建语料库并且更改/删除了一些单词,我的问题就会发生。我不是R方面的专家,但是我已经在Google上搜索了很多东西,但似乎无法弄清楚。
这是我的代码:
txt <- read_delim(fileName, ";", escape_double = FALSE, trim_ws = TRUE)
# Maak Corpus
docs <- Corpus(VectorSource(txt))
docs <- tm_map(docs, tolower)
docs <- tm_map(docs, removePunctuation)
docs <- tm_map(docs, removeNumbers)
docs <- tm_map(docs, stripWhitespace)
docs <- tm_map(docs, removeWords, stopwords('nl'))
docs <- tm_map(docs, removeWords, myWords())
docs <- tm_map(docs, content_transformer(gsub), pattern = "afspraak|afspraken|afgesproken", replacement = "afspraak")
docs <- tm_map(docs, content_transformer(gsub), pattern = "communcatie|communiceren|communicatie|comminicatie|communiceer|comuniseren|comunuseren|communictatie|comminiceren|comminisarisacie|communcaite", replacement = "communicatie")
docs <- tm_map(docs, content_transformer(gsub), pattern = "contact|kontact|kontakt", replacement = "contact")
comments <- docs
library(lattice)
stats <- txt_freq(x$upos)
stats$key <- factor(stats$key, levels = rev(stats$key))
#barchart(key ~ freq, data = stats, col = "cadetblue", main = "UPOS (Universal Parts of Speech)\n frequency of occurrence", xlab = "Freq")
## NOUNS (zelfstandige naamwoorden)
stats <- subset(x, upos %in% c("NOUN"))
stats <- txt_freq(stats$token)
stats$key <- factor(stats$key, levels = rev(stats$key))
barchart(key ~ freq, data = head(stats, 20), col = "cadetblue", main = "Most occurring nouns", xlab = "Freq")
## ADJECTIVES (bijvoeglijke naamwoorden)
stats <- subset(x, upos %in% c("ADJ"))
stats <- txt_freq(stats$token)
stats$key <- factor(stats$key, levels = rev(stats$key))
barchart(key ~ freq, data = head(stats, 20), col = "cadetblue", main = "Most occurring adjectives", xlab = "Freq")
## Using RAKE (harkjes)
stats <- keywords_rake(x = x, term = "lemma", group = "doc_id", relevant = x$upos %in% c("NOUN", "ADJ"))
stats$key <- factor(stats$keyword, levels = rev(stats$keyword))
barchart(key ~ rake, data = head(subset(stats, freq > 3), 20), col = "cadetblue", main = "Keywords identified by RAKE", xlab = "Rake")
## Using Pointwise Mutual Information Collocations
x$word <- tolower(x$token)
stats <- keywords_collocation(x = x, term = "word", group = "doc_id")
stats$key <- factor(stats$keyword, levels = rev(stats$keyword))
barchart(key ~ pmi, data = head(subset(stats, freq > 3), 20), col = "cadetblue", main = "Keywords identified by PMI Collocation", xlab = "PMI (Pointwise Mutual Information)")
## Using a sequence of POS tags (noun phrases / verb phrases)
x$phrase_tag <- as_phrasemachine(x$upos, type = "upos")
stats <- keywords_phrases(x = x$phrase_tag, term = tolower(x$token), pattern = "(A|N)*N(P+D*(A|N)*N)*", is_regex = TRUE, detailed = FALSE)
stats <- subset(stats, ngram > 1 & freq > 3)
stats$key <- factor(stats$keyword, levels = rev(stats$keyword))
barchart(key ~ freq, data = head(stats, 20), col = "cadetblue", main = "Keywords - simple noun phrases", xlab = "Frequency")
cooc <- cooccurrence(x = subset(x, upos %in% c("NOUN", "ADJ")),
term = "lemma",
group = c("doc_id", "paragraph_id", "sentence_id"))
head(cooc)
library(igraph)
library(ggraph)
library(ggplot2)
wordnetwork <- head(cooc, 30)
wordnetwork <- graph_from_data_frame(wordnetwork)
ggraph(wordnetwork, layout = "fr") +
geom_edge_link(aes(width = cooc, edge_alpha = cooc), edge_colour = "pink") +
geom_node_text(aes(label = name), col = "darkgreen", size = 4) +
theme_graph(base_family = "Arial Narrow") +
theme(legend.position = "none") +
labs(title = "Cooccurrences within sentence", subtitle = "Nouns & Adjective")
一旦我将导入的文件转换为语料库,它就会失败。有人知道我如何仍然可以执行tm_map函数,然后运行udpipe代码吗?
提前Tnx!
答案 0 :(得分:1)
有多种解决方案供您选择。但是由于您的语料库是使用vectorsource创建的,因此它只是输入的一个长向量。您可以很容易地将其返回到向量,以便udpipe
可以接管。
在udpipe
的示例文档中,所有内容均定义为x
,因此我将执行相同的操作。清理完主体后,只需执行以下操作:
x <- as.character(docs[1])
文档后的[1]很重要,否则您将获得一些不需要的其他字符。完成此操作后,运行udpipe命令将矢量转换为所需的data.frame。
x <- udpipe_annotate(ud_model, x)
x <- as.data.frame(x)
另一种方法是先将语料库(有关更多信息,请检查?writeCorpus
)到磁盘上,然后再次读取已清理的文件,并将其通过udpipe放入。这更多是一种解决方法,但可能会导致更好的工作流程。
udpipe还处理标点符号,并在特殊的upos类中添加了xpos描述(在荷兰语中,如果您使用的是荷兰模式,则称为PUNCT)Punc | komma或unc | punt。 如果名词带有大写字母,则引词将为小写。
在您的情况下,我将只使用基本的正则表达式选项来遍历数据,而不是使用tm。荷兰语停用词只是删除了一些动词,例如“ zijn”,“ worden”和“ kunnen”,在某些介词上表示为“ te”,而代词则表示为“ ik”和“ we”。无论如何,您只需要查看名词和形容词,就可以在udpipe代码中过滤掉这些内容。