在熊猫数据框中通过纬度/经度值分配城市名称

时间:2018-08-02 04:17:14

标签: python pandas google-maps numpy dataframe

我有这个数据框:

    userId      latitude    longitude        dateTime
0   121165      30.314368   76.384381   2018-02-01 00:01:57
1   95592       13.186810   77.643769   2018-02-01 00:02:17
2   111435      28.512889   77.088154   2018-02-01 00:04:02
3   129532      9.828420    76.310357   2018-02-01 00:06:03
4   95592       13.121986   77.610539   2018-02-01 00:08:54

我想创建一个新的数据框列,例如:

     userId  latitude   longitude    dateTime              city
0   121165  30.314368   76.384381   2018-02-01   00:01:57  Bengaluru
1   95592   13.186810   77.643769   2018-02-01   00:02:17  Delhi
2   111435  28.512889   77.088154   2018-02-01   00:04:02  Mumbai
3   129532  9.828420    76.310357   2018-02-01   00:06:03  Chennai
4   95592   13.121986   77.610539   2018-02-01   00:08:54  Delhi

我看到了这个code here,但没有解决。

这是此处给出的代码:

from urllib2 import urlopen
import json
def getplace(lat, lon):
    url = "http://maps.googleapis.com/maps/api/geocode/json?"
    url += "latlng=%s,%s&sensor=false" % (lat, lon)
    v = urlopen(url).read()
    j = json.loads(v)
    components = j['results'][0]['address_components']
    country = town = None
    for c in components:
        if "country" in c['types']:
            country = c['long_name']
        if "postal_town" in c['types']:
            town = c['long_name']
    return town, country
for i,j in df['latitude'], df['longitude']:
    getplace(i, j)

我在这个地方出错:

components = j['results'][0]['address_components']

  

列表索引超出范围

我输入了英国的其他一些经度值,并且得出了结果,但不适用于印度州。

所以现在我想尝试一下这样的东西:

if i,j in zip(range(79,80),range(83,84)):
    df['City']='Bengaluru'
elif i,j in zip(range(13,14),range(70,71)):
    df['City']='Delhi'

,依此类推。那么如何使用经度和纬度值以更可行的方式分配城市?

1 个答案:

答案 0 :(得分:0)

您使用的代码段来自2013年; Google API已更改,并且'postal_town'不再可用。

您可以使用以下代码,这些代码利用requests库的优势,并在没有返回结果的情况下提供保护。

In [48]: def location(lat, long):
    ...:     url = 'http://maps.googleapis.com/maps/api/geocode/json?latlng={0},{1}&sensor=false'.format(lat, long)
    ...:     r = requests.get(url)
    ...:     r_json = r.json()
    ...:     if len(r_json['results']) < 1: return None, None
    ...:     res = r_json['results'][0]['address_components']
    ...:     country  = next((c['long_name'] for c in res if 'country' in c['types']), None)
    ...:     locality = next((c['long_name'] for c in res if 'locality' in c['types']), None)
    ...:     return locality, country
    ...:

In [49]: location(28.512889, 77.088154)
Out[49]: ('Gurugram', 'India')

此函数搜索'locality',实际上对于DataFrame的第二行不返回任何内容。您可以通过检查结果来选择想要的字段(这是latlong的值为30.314368, 76.384381

[{'long_name': 'Udyog Vihar',
  'short_name': 'Udyog Vihar',
  'types': ['political', 'sublocality', 'sublocality_level_2']},
 {'long_name': 'Kapas Hera Estate',
  'short_name': 'Kapas Hera Estate',
  'types': ['political', 'sublocality', 'sublocality_level_1']},
 {'long_name': 'Gurugram',
  'short_name': 'Gurugram',
  'types': ['locality', 'political']},
 {'long_name': 'Gurgaon',
  'short_name': 'Gurgaon',
  'types': ['administrative_area_level_2', 'political']},
 {'long_name': 'Haryana',
  'short_name': 'HR',
  'types': ['administrative_area_level_1', 'political']},
 {'long_name': 'India', 'short_name': 'IN', 'types': ['country', 'political']},
 {'long_name': '122016', 'short_name': '122016', 'types': ['postal_code']}]

要将其应用于您的DataFrame,您可以像这样使用numpy的{​​{1}}(请记住,第二行不会返回任何内容)

vectorize

P.S。我注意到所需输出的城市位置不正确。

P.P.S。您还应该注意,这可能需要一些时间,因为该函数每次都需要查询API

您还可以创建范围更广的定位功能,但这将是非常粗糙的,并且您可能会覆盖太大的区域。然后,您可以按照之前显示的相同方式使用该功能

In [71]: import numpy as np

In [72]: df['locality'] = np.vectorize(location)(df['latitude'], df['longitude'])

In [73]: df
Out[73]:
   userId   latitude  longitude             dateTime   locality
0  121165  30.314368  76.384381  2018-02-01 00:01:57    Patiala
1   95592  13.186810  77.643769  2018-02-01 00:02:17       None
2  111435  28.512889  77.088154  2018-02-01 00:04:02   Gurugram
3  129532   9.828420  76.310357  2018-02-01 00:06:03  Ezhupunna
4   95592  13.121986  77.610539  2018-02-01 00:08:54  Bengaluru