如何在SymPy中生成给定维的符号多元多项式?

时间:2018-08-01 08:03:43

标签: python numpy sympy polynomial-math power-series

我想使用幂级数来近似一些PDE。给定一个numpy ndarray,我首先需要生成符号多元多项式。

考虑以下多项式:

enter image description here

我想采用m的{​​{1}}维ndarray,其中D=[d1,...,dm]是非负整数,并以符号表达式的形式生成符号多元多项式。符号表达式由以下形式的单项式组成:

enter image description here

例如,如果dj的输出应为

enter image description here

对于这种特定情况,我可以嵌套两个D=[2,3]并添加表达式。但是我不知道该怎么处理任意长度的for loops。如果我可以生成DD的{​​{1}}维ndarray而不使用for循环,那么我可以将A用作Frobenius inner product来获得所需的内容。

1 个答案:

答案 0 :(得分:2)

为此,我将使用symarrayitertools.product

from sympy import *
import itertools
D = (3, 4, 2, 3)
a = symarray("a", D)
x = symarray("x", len(D))
prod_iterator = itertools.product(*map(range, D))
result = Add(*[a[p]*Mul(*[v**d for v, d in zip(x, p)]) for p in prod_iterator])

结果是

a_0_0_0_0 + a_0_0_0_1*x_3 + a_0_0_0_2*x_3**2 + a_0_0_1_0*x_2 + a_0_0_1_1*x_2*x_3 + a_0_0_1_2*x_2*x_3**2 + a_0_1_0_0*x_1 + a_0_1_0_1*x_1*x_3 + a_0_1_0_2*x_1*x_3**2 + a_0_1_1_0*x_1*x_2 + a_0_1_1_1*x_1*x_2*x_3 + a_0_1_1_2*x_1*x_2*x_3**2 + a_0_2_0_0*x_1**2 + a_0_2_0_1*x_1**2*x_3 + a_0_2_0_2*x_1**2*x_3**2 + a_0_2_1_0*x_1**2*x_2 + a_0_2_1_1*x_1**2*x_2*x_3 + a_0_2_1_2*x_1**2*x_2*x_3**2 + a_0_3_0_0*x_1**3 + a_0_3_0_1*x_1**3*x_3 + a_0_3_0_2*x_1**3*x_3**2 + a_0_3_1_0*x_1**3*x_2 + a_0_3_1_1*x_1**3*x_2*x_3 + a_0_3_1_2*x_1**3*x_2*x_3**2 + a_1_0_0_0*x_0 + a_1_0_0_1*x_0*x_3 + a_1_0_0_2*x_0*x_3**2 + a_1_0_1_0*x_0*x_2 + a_1_0_1_1*x_0*x_2*x_3 + a_1_0_1_2*x_0*x_2*x_3**2 + a_1_1_0_0*x_0*x_1 + a_1_1_0_1*x_0*x_1*x_3 + a_1_1_0_2*x_0*x_1*x_3**2 + a_1_1_1_0*x_0*x_1*x_2 + a_1_1_1_1*x_0*x_1*x_2*x_3 + a_1_1_1_2*x_0*x_1*x_2*x_3**2 + a_1_2_0_0*x_0*x_1**2 + a_1_2_0_1*x_0*x_1**2*x_3 + a_1_2_0_2*x_0*x_1**2*x_3**2 + a_1_2_1_0*x_0*x_1**2*x_2 + a_1_2_1_1*x_0*x_1**2*x_2*x_3 + a_1_2_1_2*x_0*x_1**2*x_2*x_3**2 + a_1_3_0_0*x_0*x_1**3 + a_1_3_0_1*x_0*x_1**3*x_3 + a_1_3_0_2*x_0*x_1**3*x_3**2 + a_1_3_1_0*x_0*x_1**3*x_2 + a_1_3_1_1*x_0*x_1**3*x_2*x_3 + a_1_3_1_2*x_0*x_1**3*x_2*x_3**2 + a_2_0_0_0*x_0**2 + a_2_0_0_1*x_0**2*x_3 + a_2_0_0_2*x_0**2*x_3**2 + a_2_0_1_0*x_0**2*x_2 + a_2_0_1_1*x_0**2*x_2*x_3 + a_2_0_1_2*x_0**2*x_2*x_3**2 + a_2_1_0_0*x_0**2*x_1 + a_2_1_0_1*x_0**2*x_1*x_3 + a_2_1_0_2*x_0**2*x_1*x_3**2 + a_2_1_1_0*x_0**2*x_1*x_2 + a_2_1_1_1*x_0**2*x_1*x_2*x_3 + a_2_1_1_2*x_0**2*x_1*x_2*x_3**2 + a_2_2_0_0*x_0**2*x_1**2 + a_2_2_0_1*x_0**2*x_1**2*x_3 + a_2_2_0_2*x_0**2*x_1**2*x_3**2 + a_2_2_1_0*x_0**2*x_1**2*x_2 + a_2_2_1_1*x_0**2*x_1**2*x_2*x_3 + a_2_2_1_2*x_0**2*x_1**2*x_2*x_3**2 + a_2_3_0_0*x_0**2*x_1**3 + a_2_3_0_1*x_0**2*x_1**3*x_3 + a_2_3_0_2*x_0**2*x_1**3*x_3**2 + a_2_3_1_0*x_0**2*x_1**3*x_2 + a_2_3_1_1*x_0**2*x_1**3*x_2*x_3 + a_2_3_1_2*x_0**2*x_1**3*x_2*x_3**2

备注:

  1. symarray取决于NumPy,但这对您来说似乎不是问题。如果是这样,我将使用itertools.product
  2. 来一个一个地创建符号
  3. Add(*[...])相比,sum([...])格式在形成带有大量术语的符号和时效率更高,请参阅SymPy issue 13945