PandasDataframe to_datetime错误

时间:2018-07-31 07:22:23

标签: python-3.x pandas

我在数据帧上获得了以下索引:

data extracted Index(['2014-06-30 00:00:00.0', '2014-07-07 00:00:00.0',
       '2014-08-11 00:00:00.0', '2014-08-18 00:00:00.0',
       '2014-08-25 00:00:00.0', '2014-09-08 00:00:00.0',
       '2014-09-22 00:00:00.0', '2014-09-29 00:00:00.0',
       '2014-10-06 00:00:00.0', '2014-10-27 00:00:00.0',
       '2014-11-24 00:00:00.0', '2014-12-15 00:00:00.0',
       '2014-12-29 00:00:00.0', '2015-01-05 00:00:00.0',
       '2015-01-19 00:00:00.0', '2015-01-26 00:00:00.0',
       '2015-02-02 00:00:00.0', '2015-02-16 00:00:00.0',
       '2015-02-23 00:00:00.0', '2015-04-13 00:00:00.0',
       '2015-04-20 00:00:00.0', '2015-05-04 00:00:00.0',
       '2015-05-25 00:00:00.0', '2015-06-01 00:00:00.0',
       '2015-06-15 00:00:00.0', '2015-06-22 00:00:00.0',
       '2015-06-29 00:00:00.0', '2015-07-13 00:00:00.0',
       '2015-07-20 00:00:00.0', '2015-08-17 00:00:00.0',
       '2015-08-24 00:00:00.0', '2015-08-31 00:00:00.0',
       '2015-09-07 00:00:00.0', '2015-10-05 00:00:00.0',
       '2015-10-12 00:00:00.0', '2015-10-19 00:00:00.0',
       '2015-11-09 00:00:00.0', '2015-11-16 00:00:00.0',
       '2015-11-30 00:00:00.0', '2016-01-18 00:00:00.0',
       '2016-02-01 00:00:00.0', '2016-02-15 00:00:00.0',
       '2016-02-29 00:00:00.0', '2016-03-14 00:00:00.0',
       '2016-04-04 00:00:00.0', '2016-04-11 00:00:00.0',
       '2016-04-25 00:00:00.0', '2016-05-16 00:00:00.0',
       '2016-05-30 00:00:00.0', '2016-06-20 00:00:00.0',
       '2016-06-27 00:00:00.0', '2016-07-18 00:00:00.0',
       '2016-08-01 00:00:00.0', '2016-08-15 00:00:00.0',
       '2016-08-22 00:00:00.0', '2016-09-12 00:00:00.0',
       '2016-10-03 00:00:00.0', '2016-11-07 00:00:00.0',
       '2016-11-14 00:00:00.0', '2016-11-21 00:00:00.0',
       '2016-12-05 00:00:00.0', '2016-12-19 00:00:00.0', 'DATE'],
      dtype='object', name='DATE')

我想在星期一对此数据帧索引进行每周重新采样,因此我需要将它们转换为日期时间索引:

data = pd.read_csv('statistic.csv', 
parse_dates=True, index_col=['DATE'], low_memory=False)
data[['QUANTITY']] = data[['QUANTITY']].apply(pd.to_numeric, errors='coerce')
data_extracted = data.groupby(['DATE','ARTICLENO']) 
['QUANTITY'].sum().unstack()
data_extracted = data_extracted.fillna(value=np.nan)
data_extracted.index = pd.to_datetime(data_extracted.index)

当我尝试如上所述转换索引时,出现错误:

ValueError: Unknown string format

我认为这是最后一个条目(“ DATE”)。我该如何删除呢? data_extracted.index[:-1]? 如何转换为每周系列?我知道.resample('W-MON'),但了解一些错误和意外行为。此外,我的数据不是固定距离的,每个星期一都有数据,但不是每7天就有一次。

1 个答案:

答案 0 :(得分:0)

您可以使用:

<!DOCTYPE html>
<html lang="en">
<head>
  <title>TEMPLATE</title>
  <meta charset="utf-8">
  <meta name="viewport" content="width=device-width, user-scalable=no, initial-scale=1.0, maximum-scale=1.0, minimum-scale=1.0">
  <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css">
  <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.3.1/jquery.min.js"></script>
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js"></script>
  
<body>
<div class="banner">
  <div class="overlay"></div>
  <img src="https://www.jungleadventures.com/images/slider-03.jpg" class="img-responsive">
  <div class="content">
    <div class="container">
      <div class="col-md-8">
        <h2>Lorem ipsum dolor sit amet, consectetur</h2>
        <p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
        tempor incididunt ut labore et dolore magna aliqua.</p>
        <a href="#" class="btn btn-primary" role="button">Our Services</a>
      </div>
    </div>
  </div>
</div>
</body>
</html>