cnn中数据集的输入形状

时间:2018-07-27 02:04:12

标签: python keras deep-learning theano

我的数据集是一个由20列和100,000行组成的简单表,它不是CNN中常用的图像数据。 在这种情况下,我应该提供什么输入形状?

现在我做了-

input_shape = (21,109713,1)
model.add(Conv2D(32, kernel_size=(5, 5), strides=(1, 1),
                 activation='relu',
                 input_shape=input_shape))

出现错误-

ValueError: rng_mrg cpu-implementation does not support more than (2**31 -1) samples

完整代码-

model = Sequential()
model.add(Conv2D(32, kernel_size=(5, 5), strides=(1, 1),
                 activation='relu',
                 input_shape=input_shape))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(64, (5, 5), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(1000, activation='relu'))
model.add(Dense(num_classes, activation='softmax'))

model.compile(loss=keras.losses.categorical_crossentropy,
              optimizer=keras.optimizers.Adam(),
              metrics=['accuracy'])


class AccuracyHistory(keras.callbacks.Callback):
    def on_train_begin(self, logs={}):
        self.acc = []

    def on_epoch_end(self, batch, logs={}):
        self.acc.append(logs.get('acc'))

history = AccuracyHistory()

model.fit(x_train, y_train,
          batch_size=batch_size,
          epochs=epochs,
          verbose=1,
          validation_data=(x_test, y_test),
          callbacks=[history])

0 个答案:

没有答案