将pyspark DF写入Redshift

时间:2018-07-26 12:33:09

标签: pyspark

我已使用以下代码在Pyspark和Redshift之间建立了连接。

import sqlalchemy as sa
from sqlalchemy.orm import sessionmaker
import psycopg2
DATABASE = "d"
USER = "user1"
PASSWORD = "1234"
HOST = "sparkvalidation.crv9zfdiseqm.us-west-2.redshift.amazonaws.com"
PORT = "5439"
SCHEMA = "public"    
connection_string = "redshift+psycopg2://%s:%s@%s:%s/%s" % (USER,PASSWORD,HOST,str(PORT),DATABASE)
engine = sa.create_engine(connection_string)
session = sessionmaker()
session.configure(bind=engine)
s = session()
SetPath = "SET search_path TO %s" % SCHEMA
s.execute(SetPath)

现在如何将pyspark数据帧写入Redshift?

1 个答案:

答案 0 :(得分:0)

您可以这样写:

dataframe.write \
  .format("com.databricks.spark.redshift") \
  .option("url", connection_string) \
  .option("dbtable", "target") \
  .option("tempdir", "s3a://your_s3_tmp_bucket/tmp_data") \
  .mode("error") \
  .save()

请注意,您需要一个s3存储桶,通常是将数据复制到redshift时的情况