反转Pandas DataFrame中列顺序的最大O复杂性是什么?

时间:2018-07-23 19:34:30

标签: python algorithm pandas numpy big-o

所以可以说我在熊猫中有一个具有m行n列的DataFrame。再说一遍,我想反转列的顺序,这可以通过以下代码完成:

df_reversed = df[df.columns[::-1]]

此操作的大复杂度是多少?我假设这将取决于列数,但还会取决于行数吗?

3 个答案:

答案 0 :(得分:7)

我不知道熊猫是如何实现的,但是我确实进行了经验测试。我在Jupyter笔记本中运行以下代码以测试操作速度:

def get_dummy_df(n):
    return pd.DataFrame({'a': [1,2]*n, 'b': [4,5]*n, 'c': [7,8]*n})

df = get_dummy_df(100)
print df.shape
%timeit df_r = df[df.columns[::-1]]

df = get_dummy_df(1000)
print df.shape
%timeit df_r = df[df.columns[::-1]]

df = get_dummy_df(10000)
print df.shape
%timeit df_r = df[df.columns[::-1]]

df = get_dummy_df(100000)
print df.shape
%timeit df_r = df[df.columns[::-1]]

df = get_dummy_df(1000000)
print df.shape
%timeit df_r = df[df.columns[::-1]]

df = get_dummy_df(10000000)
print df.shape
%timeit df_r = df[df.columns[::-1]]

输出为:

(200, 3)
1000 loops, best of 3: 419 µs per loop
(2000, 3)
1000 loops, best of 3: 425 µs per loop
(20000, 3)
1000 loops, best of 3: 498 µs per loop
(200000, 3)
100 loops, best of 3: 2.66 ms per loop
(2000000, 3)
10 loops, best of 3: 25.2 ms per loop
(20000000, 3)
1 loop, best of 3: 207 ms per loop

如您所见,在前三种情况下,操作的开销是大部分时间(400-500µs),但是从第四种情况开始,所需的时间开始与操作量成正比。数据,每次都增加一个数量级。

所以,假设 n 也必须有一个比例,看来我们正在处理O(m * n)

答案 1 :(得分:3)

Big O的复杂度(从Pandas 0.24开始)为m*n,其中m是列数,n是行数。请注意,这是将DataFrame.__getitem__方法(又名[])与Indexsee relevant code, with other types that would trigger a copy)结合使用。

以下是有用的堆栈跟踪:

 <ipython-input-4-3162cae03863>(2)<module>()
      1 columns = df.columns[::-1]
----> 2 df_reversed = df[columns]

  pandas/core/frame.py(2682)__getitem__()
   2681             # either boolean or fancy integer index
-> 2682             return self._getitem_array(key)
   2683         elif isinstance(key, DataFrame):

  pandas/core/frame.py(2727)_getitem_array()
   2726             indexer = self.loc._convert_to_indexer(key, axis=1)
-> 2727             return self._take(indexer, axis=1)
   2728 

  pandas/core/generic.py(2789)_take()
   2788                                    axis=self._get_block_manager_axis(axis),
-> 2789                                    verify=True)
   2790         result = self._constructor(new_data).__finalize__(self)

  pandas/core/internals.py(4539)take()
   4538         return self.reindex_indexer(new_axis=new_labels, indexer=indexer,
-> 4539                                     axis=axis, allow_dups=True)
   4540 

  pandas/core/internals.py(4421)reindex_indexer()
   4420             new_blocks = self._slice_take_blocks_ax0(indexer,
-> 4421                                                      fill_tuple=(fill_value,))
   4422         else:

  pandas/core/internals.py(1254)take_nd()
   1253             new_values = algos.take_nd(values, indexer, axis=axis,
-> 1254                                        allow_fill=False)
   1255         else:

> pandas/core/algorithms.py(1658)take_nd()
   1657     import ipdb; ipdb.set_trace()
-> 1658     func = _get_take_nd_function(arr.ndim, arr.dtype, out.dtype, axis=axis,
   1659                                  mask_info=mask_info)
   1660     func(arr, indexer, out, fill_value)

func中对L1660的pandas/core/algorithms调用最终会调用复杂性为O(m * n)的cython函数。这是原始数据中的数据被复制到out中的位置。 out按相反顺序包含原始数据的副本。

    inner_take_2d_axis0_template = """\
    cdef:
        Py_ssize_t i, j, k, n, idx
        %(c_type_out)s fv

    n = len(indexer)
    k = values.shape[1]

    fv = fill_value

    IF %(can_copy)s:
        cdef:
            %(c_type_out)s *v
            %(c_type_out)s *o

        #GH3130
        if (values.strides[1] == out.strides[1] and
            values.strides[1] == sizeof(%(c_type_out)s) and
            sizeof(%(c_type_out)s) * n >= 256):

            for i from 0 <= i < n:
                idx = indexer[i]
                if idx == -1:
                    for j from 0 <= j < k:
                        out[i, j] = fv
                else:
                    v = &values[idx, 0]
                    o = &out[i, 0]
                    memmove(o, v, <size_t>(sizeof(%(c_type_out)s) * k))
            return

    for i from 0 <= i < n:
        idx = indexer[i]
        if idx == -1:
            for j from 0 <= j < k:
                out[i, j] = fv
        else:
            for j from 0 <= j < k:
                out[i, j] = %(preval)svalues[idx, j]%(postval)s
"""

请注意,在上面的模板函数中,有一个使用memmove的路径(在这种情况下采用的路径,因为我们是从int64映射到int64和维度的输出相同,因为我们只是在切换索引)。请注意,memmove is still O(n)与它必须复制的字节数成正比,尽管可能比直接写入索引要快。

答案 2 :(得分:-2)

我使用big_O拟合库here进行了实证测试

  

注意:所有测试均在自变量扫描6个数量级上进行(

     
      
  • rows1010^6相对于column的常量3大小,
  •   
  • columns1010^6相对于row的常量10大小
  •   

结果表明,columns.columns[::-1]反向操作DataFrame的复杂度是

  1. 公共O(n^3),其中n是rows的数量
  2. 公共O(n^3),其中n是columns的数量
  

先决条件:您将需要使用终端命令big_o()

安装pip install big_o

代码

import big_o
import pandas as pd
import numpy as np

SWEAP_LOG10 = 6
COLUMNS = 3
ROWS = 10

def build_df(rows, columns):
    # To isolated the creation of the DataFrame from the inversion operation.
    narray = np.zeros(rows*columns).reshape(rows, columns)
    df = pd.DataFrame(narray)
    return df

def flip_columns(df):
    return df[df.columns[::-1]]

def get_row_df(n, m=COLUMNS):
    return build_df(1*10**n, m)

def get_column_df(n, m=ROWS):
    return build_df(m, 1*10**n)


# infer the big_o on columns[::-1] operation vs. rows
best, others = big_o.big_o(flip_columns, get_row_df, min_n=1, max_n=SWEAP_LOG10,n_measures=SWEAP_LOG10, n_repeats=10)

# print results
print('Measuring .columns[::-1] complexity against rapid increase in # rows')
print('-'*80 + '\nBig O() fits: {}\n'.format(best) + '-'*80)

for class_, residual in others.items():
    print('{:<60s}  (res: {:.2G})'.format(str(class_), residual))

print('-'*80)

# infer the big_o on columns[::-1] operation vs. columns
best, others = big_o.big_o(flip_columns, get_column_df, min_n=1, max_n=SWEAP_LOG10,n_measures=SWEAP_LOG10, n_repeats=10)

# print results
print()
print('Measuring .columns[::-1] complexity against rapid increase in # columns')
print('-'*80 + '\nBig O() fits: {}\n'.format(best) + '-'*80)

for class_, residual in others.items():
    print('{:<60s}  (res: {:.2G})'.format(str(class_), residual))

print('-'*80)

结果

Measuring .columns[::-1] complexity against rapid increase in # rows
--------------------------------------------------------------------------------
Big O() fits: Cubic: time = -0.017 + 0.00067*n^3
--------------------------------------------------------------------------------
Constant: time = 0.032                                        (res: 0.021)
Linear: time = -0.051 + 0.024*n                               (res: 0.011)
Quadratic: time = -0.026 + 0.0038*n^2                         (res: 0.0077)
Cubic: time = -0.017 + 0.00067*n^3                            (res: 0.0052)
Polynomial: time = -6.3 * x^1.5                               (res: 6)
Logarithmic: time = -0.026 + 0.053*log(n)                     (res: 0.015)
Linearithmic: time = -0.024 + 0.012*n*log(n)                  (res: 0.0094)
Exponential: time = -7 * 0.66^n                               (res: 3.6)
--------------------------------------------------------------------------------


Measuring .columns[::-1] complexity against rapid increase in # columns
--------------------------------------------------------------------------------
Big O() fits: Cubic: time = -0.28 + 0.009*n^3
--------------------------------------------------------------------------------
Constant: time = 0.38                                         (res: 3.9)
Linear: time = -0.73 + 0.32*n                                 (res: 2.1)
Quadratic: time = -0.4 + 0.052*n^2                            (res: 1.5)
Cubic: time = -0.28 + 0.009*n^3                               (res: 1.1)
Polynomial: time = -6 * x^2.2                                 (res: 16)
Logarithmic: time = -0.39 + 0.71*log(n)                       (res: 2.8)
Linearithmic: time = -0.38 + 0.16*n*log(n)                    (res: 1.8)
Exponential: time = -7 * 1^n                                  (res: 9.7)
--------------------------------------------------------------------------------