我正在尝试在C中使用fftw3.3.5进行DFT,但是目前在将DFT应用于实际数据时遇到了麻烦,这会导致一些奇怪的事情,例如极大的数字,以及不对称的事情。
这是测试代码:
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <fftw3.h>
//#define DEBUG
int main()
{
fftw_complex *out;
fftw_plan p;
double *in;
int N = 8;
int i;
in = (double*) fftw_malloc(sizeof(double) * N);
out = (fftw_complex*) fftw_malloc(sizeof(fftw_complex) * N);
for (i = 0; i < N; i++)
{
in[i] = 1.0;
}
p = fftw_plan_dft_r2c_1d(N, in, out, FFTW_ESTIMATE);
fftw_execute(p);
for (i = 0; i < N; i++)
{
printf("%6.2f+j%6.2f\n", out[i][0],out[i][1]);
}
printf("\n");
fftw_destroy_plan(p);
fftw_free(in);
fftw_free(out);
return 0;
}
带有compile参数:
gcc -o test.exe test.c -L../lib/fftw-3.3.5-dll32 -lfftw3-3 -lm
它应该将输出显示为:
8+j0
0+j0
0+j0
0+j0
0+j0
0+j0
0+j0
0+j0
但是我得到的是:
8.00+j 0.00
0.00+j 0.00
0.00+j 0.00
0.00+j 0.00
0.00+j 0.00
403786757349850460000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.00+j944948400857723240000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.00
191040283242158910000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.00+j89520024970316631000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.00
11715519029813030000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.00+j49940585465016918000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.00
如果我尝试使用128个样本的数据,例如:
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -3,05175781250000e-05 0 -3,05175781250000e-05 0 -3,05175781250000e-05 0 -3,05175781250000e-05 0 -3,05175781250000e-05 0 -3,05175781250000e-05 0 -3,05175781250000e-05 0 0 -3,05175781250000e-05
我得到(使用sqrt(real ^ 2 + imag ^ 2)/ len * 2)作为幅度:
3.81481e-006 3.71065e-006 3.40881e-006 2.93997e-006 2.35125e-006 1.70090e-006 1.05247e-006 4.74860e-007 1.86058e-007 4.41965e-007 6.28417e-007 6.74806e-007 5.98803e-007 4.41757e-007 2.77456e-007 2.51045e-007 3.64966e-007 4.63350e-007 4.86514e-007 4.21271e-007 2.76131e-007 7.43513e-008 1.51306e-007 3.64232e-007 5.29849e-007 6.21102e-007 6.23034e-007 5.36511e-007 3.84268e-007 2.43994e-007 3.02517e-007 4.96143e-007 6.74370e-007 7.82784e-007 7.98526e-007 7.19781e-007 5.70181e-007 4.21114e-007 4.20667e-007 5.92154e-007 7.92975e-007 9.36630e-007 9.83523e-007 9.20893e-007 7.62605e-007 5.64734e-007 4.74754e-007 6.25706e-007 8.81107e-007 1.10263e-006 1.22349e-006 1.21059e-006 1.05585e-006 7.81027e-007 4.81996e-007 5.15201e-007 9.35378e-007 1.42703e-006 1.88275e-006 2.25805e-006 2.53386e-006 2.71137e-006 2.80810e-006 2.85021e-006 2.86111e-006 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000 0.00000e+000
因为我的输入是真实的,所以这样的非对称输出永远不会发生...
谁能指出我做错了什么以及如何解决?
答案 0 :(得分:2)
来自manual:
fftw_plan fftw_plan_dft_r2c_1d(int n, double *in, fftw_complex *out, unsigned flags);
在这里,n是DFT的“逻辑”大小,不一定是阵列的物理大小。特别是,实数(双精度)数组具有n个元素,而复数(fftw_complex)数组具有n / 2 + 1个元素(除法四舍五入)
因此,不写入对称部分(无论如何都是多余的)。
在您的情况下,这与您正确阅读的5个元素完全匹配,其余3个未初始化。
valgrind可以帮助您将来检测未初始化值的使用。