我正在使用此example创建一个神经网络,并且在以下行中收到错误“ ValueError:无法将形状(11253,1)的输入数组广播到形状(11253)”中: 1}}我的代码是:
trainPredictPlot[look_back:len(trainPredict)+look_back] = trainPredicty
对于X1,我有16,800个值,如下所示:
import csv
import math
import numpy as np
import pandas as pd
from keras.models import Sequential
from keras.layers import Dense
import datetime
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
X1 = [1:16801] #16,800 values
Y1 = [1:16801]#16,800 values
train_size = int(len(X1) * 0.67)
test_size = len(X1) - train_size
train, test = X1[0:train_size,], X1[train_size:len(X1),]
def Data(X1, look_back=1):
dataX, dataY = [], []
for i in range(len(X1)-look_back-1):
a = X1[i:(i+look_back), 0]
dataX.append(a)
dataY.append(Y1[i + look_back, 0])
return numpy.array(dataX), numpy.array(dataY)
look_back = 1
trainX, testX = Data(train, look_back)
testX, testY = Data(test, look_back)
look_back = 1
trainX, testX = Data(train, look_back)
testX, testY = Data(test, look_back)
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)
trainPredictPlot = numpy.empty_like(Y1)
trainPredictPlot[look_back:len(trainPredict)+look_back] = trainPredict
testPredictPlot = numpy.empty_like(Y1)
testPredictPlot[len(trainPredict)+(look_back*2)+1:len(X1)-1] = testPredict
我的Y1数据如下:
[0.03454225 0.02062136 0.00186715 ... 0.92857565 0.64930691 0.20325924]
我的回溯错误消息是:
[ 2.25226244 1.44078451 0.99174488 ... 12.8397099 9.75722427 7.98525797]
答案 0 :(得分:1)
在分配前将trainPredict
从2D数组转换为1D向量
trainPredictPlot[look_back:len(trainPredict)+look_back] = trainPredict.ravel()