从Spark ML LinearSVC解释rawPrediction

时间:2018-07-13 19:50:08

标签: machine-learning classification svm apache-spark-ml

我在二进制分类模型中使用Spark ML的LinearSVC。 transform方法创建两列predictionrawPrediction。 Spark的文档没有提供任何用于解释此特定分类器的rawPrediction列的方法。对于其他分类器,已经提出并回答了这个问题,但不是专门针对LinearSVC。

我的predictions数据框中的相关列:

+------------------------------------------+ 
|rawPrediction                             | 
+------------------------------------------+ 
|[0.8553257800650063,-0.8553257800650063]  | 
|[0.4230977574196645,-0.4230977574196645]  | 
|[0.49814263303537865,-0.49814263303537865]| 
|[0.9506355050332026,-0.9506355050332026]  | 
|[0.5826887000450813,-0.5826887000450813]  | 
|[1.057222808292026,-1.057222808292026]    | 
|[0.5744214192446275,-0.5744214192446275]  | 
|[0.8738081933835614,-0.8738081933835614]  | 
|[1.418173816502859,-1.418173816502859]    | 
|[1.0854125533426737,-1.0854125533426737]  | 
+------------------------------------------+

显然,这不仅仅是属于每个阶层的概率。什么事?

编辑:由于已请求输入代码,因此这是一个基于原始数据集中的特征子集的模型。使用Spark的LinearSVC拟合任何数据将产生此列。

var df = sqlContext
  .read
  .format("csv")
  .option("header", "true")
  .option("inferSchema", "true")
  .load("/FileStore/tables/full_frame_20180716.csv")


var assembler = new VectorAssembler()
  .setInputCols(Array("oy_length", "ah_length", "ey_length", "vay_length", "oh_length", 
                      "longest_word_length", "total_words", "repeated_exact_words",
                      "repeated_bigrams", "repeated_lemmatized_words", 
                      "repeated_lemma_bigrams"))
  .setOutputCol("features")

df = assembler.transform(df)

var Array(train, test) = df.randomSplit(Array(.8,.2), 42)

var supvec = new LinearSVC()
  .setLabelCol("written_before_2004")
  .setMaxIter(10)
  .setRegParam(0.001)

var supvecModel = supvec.fit(train)

var predictions = supvecModel.transform(test)

predictions.select("rawPrediction").show(20, false)

输出:

+----------------------------------------+ 
|rawPrediction | 
+----------------------------------------+ 
|[1.1502868455791242,-1.1502868455791242]| 
|[0.853488887006264,-0.853488887006264] | 
|[0.8064994501574174,-0.8064994501574174]| 
|[0.7919862003563363,-0.7919862003563363]| 
|[0.847418035176922,-0.847418035176922] | 
|[0.9157433788236442,-0.9157433788236442]| 
|[1.6290888181913814,-1.6290888181913814]| 
|[0.9402461917731906,-0.9402461917731906]| 
|[0.9744052798627367,-0.9744052798627367]| 
|[0.787542624053347,-0.787542624053347] | 
|[0.8750602657901001,-0.8750602657901001]| 
|[0.7949414037722276,-0.7949414037722276]| 
|[0.9163545832998052,-0.9163545832998052]| 
|[0.9875454213431247,-0.9875454213431247]| 
|[0.9193015302646135,-0.9193015302646135]| 
|[0.9828623328048487,-0.9828623328048487]| 
|[0.9175976004208621,-0.9175976004208621]| 
|[0.9608750388820302,-0.9608750388820302]| 
|[1.029326217566756,-1.029326217566756] | 
|[1.0190290910146256,-1.0190290910146256]| +----------------------------------------+ 
only showing top 20 rows

1 个答案:

答案 0 :(得分:0)

它是(-margin, margin)

override protected def predictRaw(features: Vector): Vector = {
    val m = margin(features)
    Vectors.dense(-m, m)
  }