蒙特卡洛优化

时间:2018-07-12 21:57:25

标签: python-3.x numpy optimization minimization monte-carlo-tree-search

我正在尝试进行Monte Carlo最小化来求解给定方程的参数。我的方程式有4个参数,使我的迭代约4 ** n

当我尝试迭代n = 100时,我发现搜索所有参数空间不是一个好主意。

这是我的代码:

import sys
import numpy as np
#import matplotlib.pyplot as plt
#import pandas as pd
import random


#method returns sum square for given parameter m and c
def currentFunc(x,alpha1,alpha2,alpha3,alpha4):
    term = -(x/alpha4)
    term_Norm = term
    expoterm = np.exp(term_Norm)
    expoterm = np.exp(term_Norm)
    #print('check term: x: %0.10f %0.10f exp: %0.10f' % (x,term_Norm,expoterm) )
    return(-alpha1*( (alpha2/(alpha3+ expoterm )) - 1))


def sumsquarecurr(x,y,a1,a2,a3,a4):
    xsize = len(x)
    ysize = len(y)
    sumsqdiff = 0
    if(xsize != ysize):
        print("check your X and Y length exiting ...")
        sys.exit(0)
    for i in range(ysize):
        diff = y[i] - currentFunc(x[i],a1,a2,a3,a4)
        sumsqdiff+=diff*diff
    return sumsqdiff
# number of random number (this affects the accuracy of the Monte Carlo method
n = 10
a_rnad = []
b_rnad = []
c_rnad = []
d_rnad = []
for i in range(n):
    #random.seed(555)
    xtemp = random.uniform(0.0, 2.0)
    print('check %.4f ' % (xtemp))
    a_rnad.append(xtemp)
    b_rnad.append(xtemp)
    c_rnad.append(xtemp)
    d_rnad.append(xtemp)


Yfit=[-7,-5,-3,-1,1,3,5,7]
Xfit=[8.077448e-07,6.221196e-07,4.231292e-07,1.710039e-07,-4.313762e-05,-8.248818e-05,-1.017410e-04,-1.087409e-04]
# placeholder for the parameters and the minimun sum squared
#[alpha1,alpha2,alpha3,alpha4,min]
minparam = [0,0,0,0,99999999999.0]
for j in range(len(a_rnad)):
    for i in range(len(b_rnad)):
        for k in range(len(c_rnad)):
            for m in range(len(d_rnad)):
                minsumsqdiff_temp =sumsquarecurr(Xfit,Yfit,a_rnad[j],b_rnad[i],c_rnad[k],d_rnad[m])
                print('alpha1: %.4f alpha2: %.4f alpha3: %.4f alpha4: %.4f min: %0.4f' % (a_rnad[j],b_rnad[i],c_rnad[k],d_rnad[m],minsumsqdiff_temp))
                if(minsumsqdiff_temp<minparam[4]):
                    minparam[0] = a_rnad[j]
                    minparam[1] = b_rnad[i]
                    minparam[2] = c_rnad[k]
                    minparam[3] = d_rnad[m]
                    minparam[4] = minsumsqdiff_temp

print('minimazation: alpha1: %.4f alpha2: %.4f alpha3: %.4f alpha4: %.4f min: %0.4f' % (minparam[0],minparam[1],minparam[2],minparam[3],minparam[4]))

问题:

  1. 是否有一种方法可以使该算法更快地运行(通过减少搜索/相位空间)?

  2. 我觉得我正在重新发明轮子。请问有人知道一个可以做我想做的事的python模块吗?

预先感谢您的帮助

0 个答案:

没有答案