在使用旧版sql的bigquery中,我创建了一个庞然大物的查询,该查询返回我发布于2018-02-26的网站每天的访问量的以下显示:
Row date name release_date visits_count
1 20180226 a_name 20180226 2179
2 20180227 a_name 20180226 9522
3 20180228 a_name 20180226 1593
4 20180301 a_name 20180226 300
...
我真正想要的是
Row name release count_release count_release+1 count_release_rest
1 a_name 20180226 2179 9522 1893
因此,我希望将发布日期的实际访问次数,发布日期之后的第二天以及此后的所有次数相加。 我是bigquery的新手(也是sql的新手...)。有没有一种方法可以将我的第一个显示定义为“子表”或类似的东西,以便我可以做到这一点,或者您会推荐哪种方法?
答案 0 :(得分:1)
有很多方法可以实现此功能。最简单的方法是将日期与case语句进行比较。
select name, sum(case when date = relese_date then 1 else 0) as release_count,
sum(case when date = DATE_ADD(relese_date,1,"DAY") then 1 else 0) as release_count1
sum(case when date > DATE_ADD(relese_date,1,"DAY") then 1 else 0) as release_count_other
答案 1 :(得分:0)
以下是用于BigQuery标准SQL
#standardSQL
WITH `project.dataset.table` AS (
SELECT '20180226' date, 'a_name' name, '20180226' release_date, 2179 visits_count UNION ALL
SELECT '20180227', 'a_name', '20180226', 9522 UNION ALL
SELECT '20180228', 'a_name', '20180226', 1593 UNION ALL
SELECT '20180301', 'a_name', '20180226', 300
)
SELECT name, release_date,
SUM(CASE WHEN date = release_date THEN visits_count END) count_release,
SUM(CASE WHEN PARSE_DATE('%Y%m%d', date) = DATE_ADD(PARSE_DATE('%Y%m%d', release_date), INTERVAL 1 DAY) THEN visits_count END) count_release_next_day,
SUM(CASE WHEN PARSE_DATE('%Y%m%d', date) > DATE_ADD(PARSE_DATE('%Y%m%d', release_date), INTERVAL 1 DAY) THEN visits_count END) count_release_rest
FROM `project.dataset.table`
GROUP BY name, release_date
或更高版本可以“重构”以避免重复PARSE_DATE,因此查询看起来更紧凑且更易于管理
#standardSQL
WITH `project.dataset.table` AS (
SELECT '20180226' date, 'a_name' name, '20180226' release_date, 2179 visits_count UNION ALL
SELECT '20180227', 'a_name', '20180226', 9522 UNION ALL
SELECT '20180228', 'a_name', '20180226', 1593 UNION ALL
SELECT '20180301', 'a_name', '20180226', 300
)
SELECT name, release_date,
SUM(CASE WHEN date = release_date THEN visits_count END) count_release,
SUM(CASE WHEN visit = release_next_day THEN visits_count END) count_release_next_day,
SUM(CASE WHEN visit > release_next_day THEN visits_count END) count_release_rest
FROM `project.dataset.table`,
UNNEST([STRUCT<visit DATE, release_next_day DATE>(
PARSE_DATE('%Y%m%d', date),
DATE_ADD(PARSE_DATE('%Y%m%d', release_date), INTERVAL 1 DAY))]) x
GROUP BY name, release_date
两种情况下的结果都是
Row name release_date count_release count_release_next_day count_release_rest
1 a_name 20180226 2179 9522 1893