Keras GRUCell缺少1个必需的位置参数:“ states”

时间:2018-07-09 22:09:44

标签: python machine-learning keras rnn gated-recurrent-unit

我尝试使用Keras构建3层RNN。部分代码在这里:

    model = Sequential()
    model.add(Embedding(input_dim = 91, output_dim = 128, input_length =max_length))
    model.add(GRUCell(units = self.neurons, dropout = self.dropval,  bias_initializer = bias))
    model.add(GRUCell(units = self.neurons, dropout = self.dropval,  bias_initializer = bias))
    model.add(GRUCell(units = self.neurons, dropout = self.dropval,  bias_initializer = bias))
    model.add(TimeDistributed(Dense(target.shape[2])))

然后我遇到此错误:

call() missing 1 required positional argument: 'states'

错误详细信息如下:

~/anaconda3/envs/hw3/lib/python3.5/site-packages/keras/models.py in add(self, layer)
487                           output_shapes=[self.outputs[0]._keras_shape])
488         else:
--> 489             output_tensor = layer(self.outputs[0])
490             if isinstance(output_tensor, list):
491                 raise TypeError('All layers in a Sequential model '

 ~/anaconda3/envs/hw3/lib/python3.5/site-packages/keras/engine/topology.py in __call__(self, inputs, **kwargs)
601 
602             # Actually call the layer, collecting output(s), mask(s), and shape(s).
--> 603             output = self.call(inputs, **kwargs)
604             output_mask = self.compute_mask(inputs, previous_mask)
605 

1 个答案:

答案 0 :(得分:4)

  1. 请勿在Keras中直接使用Cell类(即GRUCellLSTMCell)。它们是计算单元,由相应的层包裹。而是使用Layer类(即GRULSTM):

    model.add(GRU(units = self.neurons, dropout = self.dropval,  bias_initializer = bias))
    model.add(GRU(units = self.neurons, dropout = self.dropval,  bias_initializer = bias))
    model.add(GRU(units = self.neurons, dropout = self.dropval,  bias_initializer = bias))
    

    LSTMGRU使用它们相应的单元格在所有时间步上执行计算。阅读此SO answer,以了解有关它们之间差异的更多信息。

  2. 在将多个RNN层彼此堆叠时,需要将其return_sequences参数设置为True,以产生每个时间步的输出,然后使用该时间步到下一个RNN层。请注意,您可能会或可能不会在最后一个RNN层上执行此操作(这取决于您的体系结构和您要解决的问题):

    model.add(GRU(units = self.neurons, dropout = self.dropval,  bias_initializer = bias, return_sequences=True))
    model.add(GRU(units = self.neurons, dropout = self.dropval,  bias_initializer = bias, return_sequences=True))
    model.add(GRU(units = self.neurons, dropout = self.dropval,  bias_initializer = bias))