我尝试使用Keras构建3层RNN。部分代码在这里:
model = Sequential()
model.add(Embedding(input_dim = 91, output_dim = 128, input_length =max_length))
model.add(GRUCell(units = self.neurons, dropout = self.dropval, bias_initializer = bias))
model.add(GRUCell(units = self.neurons, dropout = self.dropval, bias_initializer = bias))
model.add(GRUCell(units = self.neurons, dropout = self.dropval, bias_initializer = bias))
model.add(TimeDistributed(Dense(target.shape[2])))
然后我遇到此错误:
call() missing 1 required positional argument: 'states'
错误详细信息如下:
~/anaconda3/envs/hw3/lib/python3.5/site-packages/keras/models.py in add(self, layer)
487 output_shapes=[self.outputs[0]._keras_shape])
488 else:
--> 489 output_tensor = layer(self.outputs[0])
490 if isinstance(output_tensor, list):
491 raise TypeError('All layers in a Sequential model '
~/anaconda3/envs/hw3/lib/python3.5/site-packages/keras/engine/topology.py in __call__(self, inputs, **kwargs)
601
602 # Actually call the layer, collecting output(s), mask(s), and shape(s).
--> 603 output = self.call(inputs, **kwargs)
604 output_mask = self.compute_mask(inputs, previous_mask)
605
答案 0 :(得分:4)
请勿在Keras中直接使用Cell类(即GRUCell
或LSTMCell
)。它们是计算单元,由相应的层包裹。而是使用Layer类(即GRU
或LSTM
):
model.add(GRU(units = self.neurons, dropout = self.dropval, bias_initializer = bias))
model.add(GRU(units = self.neurons, dropout = self.dropval, bias_initializer = bias))
model.add(GRU(units = self.neurons, dropout = self.dropval, bias_initializer = bias))
LSTM
和GRU
使用它们相应的单元格在所有时间步上执行计算。阅读此SO answer,以了解有关它们之间差异的更多信息。
在将多个RNN层彼此堆叠时,需要将其return_sequences
参数设置为True
,以产生每个时间步的输出,然后使用该时间步到下一个RNN层。请注意,您可能会或可能不会在最后一个RNN层上执行此操作(这取决于您的体系结构和您要解决的问题):
model.add(GRU(units = self.neurons, dropout = self.dropval, bias_initializer = bias, return_sequences=True))
model.add(GRU(units = self.neurons, dropout = self.dropval, bias_initializer = bias, return_sequences=True))
model.add(GRU(units = self.neurons, dropout = self.dropval, bias_initializer = bias))