我正在尝试以异步方式使用Python,以便加快对服务器的请求。服务器的响应时间很慢(通常是几秒钟,但有时甚至快于一秒钟),但是并行运行良好。我无权访问此服务器,也无法更改任何内容。因此,我有一个预先知道的URL列表(在下面的代码pages
中),并且希望通过一次发出NO_TASKS=5
个请求来加快其加载速度。另一方面,我不想使服务器超载,因此我希望每个请求之间的暂停时间为1秒(即每秒1个请求的限制)。
到目前为止,我已经使用Trio队列成功实现了信号量部分(一次五个请求)。
import asks
import time
import trio
NO_TASKS = 5
asks.init('trio')
asks_session = asks.Session()
queue = trio.Queue(NO_TASKS)
next_request_at = 0
results = []
pages = [
'https://www.yahoo.com/',
'http://www.cnn.com',
'http://www.python.org',
'http://www.jython.org',
'http://www.pypy.org',
'http://www.perl.org',
'http://www.cisco.com',
'http://www.facebook.com',
'http://www.twitter.com',
'http://www.macrumors.com/',
'http://arstechnica.com/',
'http://www.reuters.com/',
'http://abcnews.go.com/',
'http://www.cnbc.com/',
]
async def async_load_page(url):
global next_request_at
sleep = next_request_at
next_request_at = max(trio.current_time() + 1, next_request_at)
await trio.sleep_until(sleep)
next_request_at = max(trio.current_time() + 1, next_request_at)
print('start loading page {} at {} seconds'.format(url, trio.current_time()))
req = await asks_session.get(url)
results.append(req.text)
async def producer(url):
await queue.put(url)
async def consumer():
while True:
if queue.empty():
print('queue empty')
return
url = await queue.get()
await async_load_page(url)
async def main():
async with trio.open_nursery() as nursery:
for page in pages:
nursery.start_soon(producer, page)
await trio.sleep(0.2)
for _ in range(NO_TASKS):
nursery.start_soon(consumer)
start = time.time()
trio.run(main)
但是,我缺少限制部分的实现,即。 e。最大实施每秒1个请求。您可以在我尝试执行的操作上方看到这些内容(async_load_page
的前五行),但是正如您在执行代码时所看到的那样,这是行不通的:
start loading page http://www.reuters.com/ at 58097.12261669573 seconds
start loading page http://www.python.org at 58098.12367392373 seconds
start loading page http://www.pypy.org at 58098.12380622773 seconds
start loading page http://www.macrumors.com/ at 58098.12389389973 seconds
start loading page http://www.cisco.com at 58098.12397854373 seconds
start loading page http://arstechnica.com/ at 58098.12405119873 seconds
start loading page http://www.facebook.com at 58099.12458010273 seconds
start loading page http://www.twitter.com at 58099.37738939873 seconds
start loading page http://www.perl.org at 58100.37830828273 seconds
start loading page http://www.cnbc.com/ at 58100.91712723473 seconds
start loading page http://abcnews.go.com/ at 58101.91770178373 seconds
start loading page http://www.jython.org at 58102.91875295573 seconds
start loading page https://www.yahoo.com/ at 58103.91993155273 seconds
start loading page http://www.cnn.com at 58104.48031027673 seconds
queue empty
queue empty
queue empty
queue empty
queue empty
我花了一些时间来寻找答案,但是找不到答案。
答案 0 :(得分:2)
为此,使用trio.current_time()
太复杂了,恕我直言。
进行速率限制的最简单方法是速率限制器,即基本上可以执行此操作的单独任务:
async def ratelimit(queue,tick, task_status=trio.TASK_STATUS_IGNORED):
with trio.open_cancel_scope() as scope:
task_status.started(scope)
while True:
await queue.get()
await trio.sleep(tick)
示例用法:
async with trio.open_nursery() as nursery:
q = trio.Queue(0)
limiter = await nursery.start(ratelimit, q, 1)
while whatever:
await q.put(None) # will return at most once per second
do_whatever()
limiter.cancel()
换句话说,您使用以下命令开始该任务
q = trio.Queue(0)
limiter = await nursery.start(ratelimit, q, 1)
然后您可以确定最多拨打一次
await q.put(None)
每秒将返回,因为零长度队列充当集合点。完成后,致电
limiter.cancel()
停止速率限制任务,否则您的托儿所将不会退出。
如果您的用例包含开始的子任务,您需要在取消限制器之前完成这些子任务,那么最简单的方法是将它们冲洗到另一个苗圃中,而不是
while whatever:
await q.put(None) # will return at most once per second
do_whatever()
limiter.cancel()
您将使用类似
async with trio.open_nursery() as inner_nursery:
await start_tasks(inner_nursery, q)
limiter.cancel()
它将在触摸限制器之前等待任务完成。
NB:您可以轻松地使其适应“突发”模式,即,只需增加队列的长度,就可以在速率限制生效之前允许一定数量的请求。
答案 1 :(得分:2)
实现目标的一种方法是使用工作人员在发送请求之前获取的互斥锁,并在一段时间后在单独的任务中释放:
{
item: 'list'
}
如果async def fetch_urls(urls: Iterator, responses, n_workers, throttle):
# Using binary `trio.Semaphore` to be able
# to release it from a separate task.
mutex = trio.Semaphore(1)
async def tick():
await trio.sleep(throttle)
mutex.release()
async def worker():
for url in urls:
await mutex.acquire()
nursery.start_soon(tick)
response = await asks.get(url)
responses.append(response)
async with trio.open_nursery() as nursery:
for _ in range(n_workers):
nursery.start_soon(worker)
的响应早于worker
秒,它将在throttle
上阻塞。否则,await mutex.acquire()
将释放mutex
,而另一个tick
将能够获取它。
这类似于leaky bucket算法的工作原理:
worker
的工人就像桶里的水。mutex
就像一个桶以恒定的速率泄漏。如果在发送请求之前添加一些日志记录,则应该获得类似于以下的输出:
tick
答案 2 :(得分:0)
每次进入next_request_at
时,您需要将async_load_page
加1。尝试使用next_request_at = max(trio.current_time() + 1, next_request_at + 1)
。另外,我认为您只需设置一次即可。如果将其设置为等待状态,则可能会遇到麻烦,在这里您有机会让其他任务对其进行更改,然后再进行检查。
答案 3 :(得分:0)
自从我问了这个问题以来已经过去了几个月。从那时起,Python得到了改进,三人组(以及我对它们的了解)也有所改进。因此,我认为是时候使用带有类型注释和trio-0.10内存通道的Python 3.6进行一些更新了。
我对原始版本进行了自己的改进,但是在阅读@Roman Novatorov的出色解决方案后,再次对其进行了调整,这就是结果。对于函数的主要结构(以及出于说明目的而使用httpbin.org的想法)表示敬意。我选择使用内存通道而不是互斥锁,以便能够从工作线程中删除所有令牌重新释放逻辑。
我可以这样改写原来的问题:
如果您不熟悉存储通道及其语法,则可以在trio doc中进行阅读。我认为async with memory_channel
和memory_channel.clone()
的逻辑可能在一开始就令人困惑。
from typing import List, Iterator
import asks
import trio
asks.init('trio')
links: List[str] = [
'https://httpbin.org/delay/7',
'https://httpbin.org/delay/6',
'https://httpbin.org/delay/4'
] * 3
async def fetch_urls(urls: List[str], number_workers: int, throttle_rate: float):
async def token_issuer(token_sender: trio.abc.SendChannel, number_tokens: int):
async with token_sender:
for _ in range(number_tokens):
await token_sender.send(None)
await trio.sleep(1 / throttle_rate)
async def worker(url_iterator: Iterator, token_receiver: trio.abc.ReceiveChannel):
async with token_receiver:
for url in url_iterator:
await token_receiver.receive()
print(f'[{round(trio.current_time(), 2)}] Start loading link: {url}')
response = await asks.get(url)
# print(f'[{round(trio.current_time(), 2)}] Loaded link: {url}')
responses.append(response)
responses = []
url_iterator = iter(urls)
token_send_channel, token_receive_channel = trio.open_memory_channel(0)
async with trio.open_nursery() as nursery:
async with token_receive_channel:
nursery.start_soon(token_issuer, token_send_channel.clone(), len(urls))
for _ in range(number_workers):
nursery.start_soon(worker, url_iterator, token_receive_channel.clone())
return responses
responses = trio.run(fetch_urls, links, 5, 1.)
如您所见,所有页面请求之间的最短时间为一秒:
[177878.99] Start loading link: https://httpbin.org/delay/7
[177879.99] Start loading link: https://httpbin.org/delay/6
[177880.99] Start loading link: https://httpbin.org/delay/4
[177881.99] Start loading link: https://httpbin.org/delay/7
[177882.99] Start loading link: https://httpbin.org/delay/6
[177886.20] Start loading link: https://httpbin.org/delay/4
[177887.20] Start loading link: https://httpbin.org/delay/7
[177888.20] Start loading link: https://httpbin.org/delay/6
[177889.44] Start loading link: https://httpbin.org/delay/4
与异步代码一样,此解决方案不会保留请求的URL的原始顺序。解决此问题的一种方法是将id与原始网址关联。 G。具有元组结构,将响应放入响应字典中,然后依次抓取响应以将它们放入响应列表(节省排序并具有线性复杂度)。