我目前正在使用Keras模型,该模型具有一个嵌入层作为第一层。为了可视化单词之间的关系和相似性,我需要一个函数,该函数返回词汇表中每个元素的单词和向量的映射(例如'love'-[0.21、0.56,...,0.65、0.10] )。
有什么办法吗?
答案 0 :(得分:11)
您可以使用嵌入层的get_weights()
方法获得词嵌入(即本质上来说,嵌入层的权重就是嵌入向量):
# if you have access to the embedding layer explicitly
embeddings = emebdding_layer.get_weights()[0]
# or access the embedding layer through the constructed model
# first `0` refers to the position of embedding layer in the `model`
embeddings = model.layers[0].get_weights()[0]
# `embeddings` has a shape of (num_vocab, embedding_dim)
# `word_to_index` is a mapping (i.e. dict) from words to their index, e.g. `love`: 69
words_embeddings = {w:embeddings[idx] for w, idx in word_to_index.items()}
# now you can use it like this for example
print(words_embeddings['love']) # possible output: [0.21, 0.56, ..., 0.65, 0.10]